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Abstract: Crop wild relatives (CWR) are wild plant taxa genetically related to domesticated crops with trait diversity that
can be used in plant breeding to sustain food security. Prioritization is a prerequisite for the cost–effective conservation of
CWR as it allows CWR in a checklist to be reduced to a manageable number for active conservation action. In this study, a
partial CWR checklist comprising 1651 taxa was compiled for West Africa. Prioritization of the annotated CWR checklist was
based on three criteria: (i) economic value of the related crop in West Africa, (ii) CWR genetic closeness to its related crop
and (iii) threat status. After applying the three criteria using the parallel method of prioritization, 102 priority CWR were
selected for active conservation action. The priority CWR are related to food crops that are nationally, regionally and globally
important, such as white guinea yam (Dioscorea cayenensis subsp. rotundata (Poir) J. Miège), cassava (Manihot esculenta
Crantz), rice (Oryza sativa L.), wheat (Triticum aestivum L.), cowpea (Vigna unguiculata (L.) Walp.), sweet potato (Ipomea
batatas (L.) Lam.), common bean (Phaseolus vulgaris L.) and sorghum (Sorghum bicolor (L.) Moench). This CWR checklist
and prioritization will help in the development of a regional conservation action plan for West Africa.
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Introduction

The significant effects of climate change on agriculture
and livelihood in West Africa recently show the need to
develop varieties of crops that can adapt to the rising
temperatures, desertification, unpredictable rainfalls,
floods and droughts and new diseases and pests, as
well as meet the yield quality and quantity requirements
of producers and consumers (Maxted et al, 2015;
Mousavi-Derazmahalleh et al, 2018; Allen et al, 2019).
Climate change has led to yield losses in different
crops and will continue to adversely affect agriculture
with considerable yield decline predicted in West
Africa (Sultan et al, 2019). IPCC reported that the
duration of the growing season in West Africa may
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be reduced by 20% in 2050, resulting in about 40%
yield reduction in cereals (Zougmoré et al, 2016).
The increasing population in the Western Africa region
may further limit the ability of the region to meet
the food and nutrient security needs of its growing
population. CWR are wild plant taxa genetically related
to domesticated crops and are widely recognised as a
major reservoir of valuable diversity that can be used
in plant breeding to sustain food and nutrient security
in the future (Maxted et al, 2006; Magos Brehm et al,
2017; Herden et al, 2020; Kioukis et al, 2020). Many
CWR thrive in marginal environments (Jarvis et al,
2015; Phillips et al, 2017; Vincent et al, 2019), making
them better suited to withstand changing climate
conditions. The extensive genetic diversity in CWR has
been used globally in plant breeding programmes to
produce crop cultivars with traits for high yield, drought
tolerance, disease resistance, good handling quality, seed
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weight, early flowering time, cooking quality and better
storage quality (Maxted and Kell, 2009; USDA, 2011).

CWR conservation and use contributes to the
Sustainable Development Goal (SDG) of the United
Nations (United Nations, 2015). Also, the United
Nations’ Intergovernmental Science – Policy Platform on
Biodiversity and Ecosystem Service (IPBES), described
CWR as vital for future food and nutrient security,
ameliorating ecosystems and adapting crops to marginal
environments (IPBES, 2019).

There are about 45,000 plant species in Sub-Saharan
Africa (Linder, 2014). In Nigeria alone, there are
thought to be 7,895 different plant species (Federal
Republic of Nigeria, 2010). However, the diversity of
CWR is widely threatened by unsustainable use of nat-
ural resources, urbanization, deteriorating environmen-
tal conditions, the introduction of exotic species and
climate change (Maxted and Kell, 2009; Magos Brehm
et al, 2017). Several CWR thrive on farmlands and are
therefore threatened by agrochemical inputs and inten-
sive agricultural systems (Jarvis et al, 2015; Capistrano-
Gossmann et al, 2017; Vincent et al, 2019). Also, increas-
ing population, poverty, habitat destruction, overgraz-
ing, lack of land use planning and deforestation causes
biodiversity loss in West Africa (Adejuwon, 2000). There
is therefore the need for active in situ and ex situ conser-
vation of CWR in West Africa, to ensure they continue
to provide profitable genes to produce plant cultivars to
meet the growing demand for ample food supply for the
people of West Africa and beyond.

Developing a regional and national conservation plan
is essential if poverty alleviation and food provision is
to be maximised. This starts with making an inventory
of CWR. Several countries already have CWR inventory,
such as UK (Fielder et al, 2012), USA (Khoury et al,
2013), China (Kell et al, 2015) and Indonesia (Rahman
et al, 2019). A CWR checklist is a list of CWR
taxa found in a defined geographical area. A CWR
checklist may contain additional information on the
priority CWR which are important for conservation
planning including taxon distribution, reproduction and
conservation status, turning the checklist into a CWR
inventory. As reported by Magos Brehm et al (2017) the
steps involved in the generation of a CWR inventory
are: (i) compilation of a national flora, (ii) matching
the national flora against an existing digitized list of
crop genera to obtain a list of taxa of the same genera
as the list in the national flora, thereby producing the
CWR checklist, (iii) prioritization of the CWR checklist
to generate a realistic and manageable number of
priority CWR, and (iv) annotation of the priority list of
CWR with additional information for active conservation
action to produce a CWR inventory (Maxted et al,
2007; Magos Brehm et al, 2017). Prioritization involves
reducing the number of taxa in the CWR checklist into
a number manageable for active conservation actions
due to resource constraints and funding limitations. The
prioritization criteria may include crop socio-economic
value, CWR genetic closeness and ability to donate genes

to the related crop, endemicity, occurrence, threat status
and other related parameters (Magos Brehm et al, 2017;
Thormann et al, 2017). There is presently no complete
CWR checklist or inventory for West Africa.

This paper aims at the generation of a regional CWR
checklist for West Africa, prioritization of this CWR
checklist and the compilation of a CWR inventory, using
the method described by Maxted et al (2007).

Materials and Methods

Creation of a CWR checklist for West Africa

A monographic approach (for selected crop genera)
was carried out in order to produce a digitized CWR
checklist (Magos Brehm et al, 2017) for West Africa,
including the following countries: Benin, Burkina Faso,
Cape Verde, Cote d’ Ivoire, Gambia, Ghana, Guinea,
Guinea- Bissau, Liberia, Mali, Mauritania, Niger, Nigeria,
Senegal, Sierra Leone and Togo. A digitized flora for
families known to contain CWR taxa was compiled
for 12 selected plant families. WCSP (2020) was used
for the Araceae, Arecaceae, Convolvulaceae, Dioscoraceae,
Euphorbiaceae, Musaceae, Poaceae and Zingiberaceae,
while the regional printed flora (Huchinson and Dalziel,
1958) was used for the Malvaceae, Papilionaceae,
Sterculiaceae and Caricaceae.

The following steps were involved in generating the
CWR checklist:

(i) Produce a digitized list of regional flora:
All taxa (i.e. species, subspecies, and varieties)

belonging to the selected plant families were included
in the floristic checklist. Information related to the
different taxa of the regional flora was entered
in the CWR checklist and inventory data template
v.1 (Thormann et al, 2017), including: family, genus,
species and authorities, various sub-ranks, taxon, sub-
taxon, taxon common name, synonyms, related crop(s)
and common name of the related crop (Thormann et al,
2017; Rahman et al, 2019).

(ii) Produce a digitized list of crops:
A digitized list of crop genera was produced from

the following sources: (i) all crops cultivated in the
world (FAO, 2021), (ii) major and minor food crops
from the World Atlas of Biodiversity (Groombridge et al,
2002), and (iii) Annex 1 of the International Treaty
on Plant Genetic Resources for Food and Agriculture
(ITPGRFA) for both forage and food crops (FAO, 2009).
The digitized list of crop genera was obtained from a
published crop and crop genus list for CWR checklist and
prioritization (Kell, 2016).

(iii) Match the crop genera against the floristic
checklist to produce the CWR checklist:

The digitized list of crops was matched against the
floristic list to produce the CWR checklist (Magos
Brehm et al, 2017). Taxa cultivated but with no wild
relatives in West Africa such as cocoyam (Colocasia
esculenta (L.) Schott), coconut (Cocos nucifera L.), oil
palm (Elaeis guineensis Jacq) or maize (Zea mays L.)
were removed. The draft CWR checklist was sent to
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experts and agricultural stakeholders for validation. The
draft CWR checklist was approved by the experts and
agricultural stakeholders for prioritization.

CWR Prioritization

Different criteria and methods have been used to
prioritize CWR checklists in the past for several
countries and regions of the world, depending on the
country and who will fund the CWR conservation
action (Magos Brehm et al, 2017). In this work,
three criteria were applied in the prioritization of the
CWR checklist for West Africa (Maxted et al, 2013):
(i) crop value in West Africa from FAOSTAT, (ii)
CWR closeness to the crop from the Harlan and de
Wet CWR diversity (https://www.cwrdiversity.org/che
cklist/) and (https://npgsweb.ars-grin.gov/gringlobal/
taxon/taxonomysearchcwr.aspx), with CWR closeness
restricted to gene pool or proven use in breeding within
tertiary gene pool (GP3) (Maxted and Kell (2009), and
(iii) global threat status according to IUCN (https://ww
w.iucn.org/).

A parallel method was used through a point scoring
process in which taxa were scored for all criteria, ranked
according to their total score, and selected based on a
‘cut off’ score. For all criteria, taxa with a score of ≥3
were selected for prioritization. In assigning scores to
criterion one (value), human food crops were scored
(7 points), crops used as food additive (5), material
(3), animal feed (1) and environmental use (1). Food
crops (important for nutrition and food security), food
additives and materials were selected for prioritization,
excluding animal feed and environmental use crops.
In assigning scores to the second criterion (genetic
closeness), GP1 was scored (9 points), GP2 (7), GP3
(3), and CWR that lack this information [i.e. those
belonging to Taxon Group 4 (TG4)] were scored (1
point). TG4 are CWR that belong to the same genus with
their related crop. Applying the second criterion, CWR
belonging to the primary gene pool (GP1B), secondary
gene pool (GP2), and tertiary gene pool (GP3) with
proven use in crop improvement were selected for
prioritization (Ford-Lloyd et al, 2008). Based on the
third criterion (threat status), all evaluated CWR were
selected for prioritization, excluding CWR that have not
been evaluated (Maxted et al, 2013).

Results

The monographic CWR checklist for West Africa contains
1651 taxa from 379 genera. After the digitized list
of crop genera was matched with the floristic list, a
total of 392 CWR (and crops) resulted, belonging to 46
genera. Cultivated taxa without wild relatives in West
Africa were removed, bringing the number to 379 taxa
belonging to 33 genera. After applying the three criteria
of the parallel method for prioritization (Kell et al, 2017;
Ng’uni et al, 2019), the CWR checklist was reduced
to a total of 102 priority CWR from 18 genera with
24 sub-taxon (subspecies/varieties). The priority CWR
are related to 15 crops or crop groups important for

Figure 1. Gross Production Value for the period 2010-2019
of socio-economically valuable crops in West Africa. Data
source: FAO (2021).

the West African region. The families with the highest
number of CWR species are Poaceae (39), Papilionaceae
(26), Dioscoreaceae (15) and Convolvulaceae (13). The
genus with the highest number of CWR are Vigna (23),
Dioscorea (15), Ipomoea (13), Oryza (6) and Cola (5)
(Table 1).

Socio-economic Value of Related Crops

Yam (Dioscorea cayenensis subsp. rotundata (Poir) J.
Miege) is the most economically valuable crop in
West Africa, with the highest gross production value
(Supplemental Table S3). It is followed by cassava
(Manihot esculenta Crantz), rice (Oryza sativa L.),
finger millet (Eleusine coracana (L.) Gaertn), sorghum
(Sorghum bicolor (L.) Moench), cotton (Gossypium
hirsutum L.) and cowpea (Vigna unguiculata (L.) Walp.)
(Figure 1). Yam (Dioscorea cayenensis subsp. rotundata
(Poir) J. Miège) also has the second largest number
of CWR (15) after cowpea (23). Cassava (Manihot
esculenta Crantz) and rice (Oryza sativa L.) which are
the second and third in gross production value, have five
and six CWR, respectively in the inventory (Table 1).

CWR Closeness to Related Crops

Forty-five 45 (44 %) of the taxa were selected for
prioritization using the criterion of taxa belonging to
gene pools GP1B, GP2 or proven use of GP3 in crop
improvement. Among the CWR selected, 21 (20.58 %)
belong to GP1B, 28 (27.4%) are GP2 while 53 (51.9%)
belong to GP3 or Taxon Group 4 (Supplemental Table
S1). Among the 53 CWR belonging to GP3/Taxon Group
4, three (2.9%) have potential and confirmed use in
crop improvement. Twenty-two (21.7%) of the CWR
have confirmed use in crop improvement for crops
such as wheat, rice, yam, sorghum, cassava, cowpea,
millet and cotton, contributing to yield improvement,
drought tolerance and resistance to several diseases in
different crops as well as fibre quality in cotton (Table 2).
Out of the 14 CWR taxa in the genus Dioscorea,
five have confirmed use in crop improvement against
various diseases such as anthracnose, yam mosaic virus
(YMV) and yam nematode. Four CWR out of six

https://www.iucn.org
https://www.iucn.org
https://www.cwrdiversity.org/checklist/
https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearchcwr.aspx
http://w.iucn.org/
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Table 1. Numbers of priority CWR for West Africa and their related crops.

Family Genus Related crop No. of CWR taxa

Areceae Phoenix Date palm 1
Convolvulaceae Ipomoea Sweet potato 13
Dioscoreaceae Dioscorea White yam 15
Euphorbiaceae Manihot Cassava 5
Malvaceae Gossypium Cotton 3
Papilionaceae Phaseolus Common bean, kidney

bean
3

Vigna Cowpea 23
Poaceae Digitaria Fonio 4

Eleusine Finger millet 3
Eragrostis Teff 4
Hordeum Barley 2
Oryza Rice 6
Saccharum Sugarcane 2
Sorghum Sorghum 4
Triticum Wheat 2
Echinochloa Barnyard millet, Japanese

millet
5

Panicum Proso millet 2
Sterculiaceae Cola Kola nut 5

Total CWR 102

in the genus Manihot have confirmed utilization for
crop improvement against cassava brown streak disease
(CBSD).

Threat Status of CWR

The threat status of 71 (69.6%) of the priority CWR
has been determined under the IUCN threat assessment
criteria (IUCN, 2012). All the priority CWR were globally
assessed. Vigna desmodioides R. Wilczek is the only
Endangered (EN) priority CWR. Two priority CWR
are Near Threatened (NT): Dioscorea sensibarensis Pax
and Gossypium anomalum Wawra. Two CWR are Data
Deficient (DD): Gossypium herbaceum var acertifolium
(Guill & Perr.) A. Chev. and Oryza brachyantha A.
Chev. & Roehr. Sixty-six (64.7%) of the priority CWR
are Least concern (LC) while 31 (30.4%) were Not
Evaluated (NE) (Figure 2). Rice (Oryza sativa L.) was
the only socio-economically valuable crop that had all its
CWR assessed for threat status (Huchinson and Dalziel,
1958).

CWR Distribution

Eighty-four (69%) of the priority taxa were regionally
endemic to West Africa, and 10 (8%) were nation-
ally endemic. The nationally endemic priority taxa
included: Oryza eichingeri Peter and Cola attiensis
Aubrév. & Pellegr. (Cote D’ Ivoire), Cola angustifolia
K.Schum. (Sierra Leone), Ipomoea intrapilosa Rose, Ipo-
moea prismatosyphon Welw., Vigna ambacensis Welw.
ex Bak., Vigna macrorhyncha (Harms) Milne–Redh.,
Cola altissima Engl. and Cola argentea Mast. (Nige-
ria) (Huchinson and Dalziel, 1958) (Supplemental

Table S2). Six priority taxa (5%) were found in all
15 countries in West Africa and include: Echinochloa
colona (L.) Link, Echinochloa pyramidalis (Lam.) Hitchc.
& Chase, Eragrostis japonica (Thunb.) Trin., Eragrostis
pilosa (L.) P.Beauv., Oryza barthi A. Chev. and Eleu-
sine indica (L.) Gaertn. (Huchinson and Dalziel, 1958;
WCSP, 2020) (Supplemental Table S2).

Figure 2. Number of priority taxa in the IUCN categories. Data
source: IUCN (2020).
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Table 2. Confirmed and potential use of priority CWR for Nigeria and West Africa in crop improvement.

Crop CWR Confirmed and potential use

White Guinea
yam

Dioscorea abyssinica Hochst. ex Kunth Yam mosaic virus (YMV) and anthracnose
resistance (Lopez-Montes et al, 2012)

Dioscorea praehensilis Benth. Yam mosaic virus (YMV) and anthracnose
resistance (Lopez-Montes et al, 2012)

Dioscorea alata L. Anthracnose resistance, improved cooking
quality and reduced tuber
oxidation (Lopez-Montes et al, 2012)

Dioscorea bulbifera L. Yield improvement (Saini et al, 2016)

Dioscorea cayennensis Lam Anthracnose and yam nematode resistance,
drought tolerance (Lopez-Montes et al, 2012)

Cassava Manihot esculenta subsp. peruviana Crantz

Manihot carthagenensis subsp. glaziovii
(Müll. Arg.) Allem
Manihot dichotoma Ule
Manihot esculenta subsp. flabellifolia
Crantz

Cassava brown streak disease (CBSD)
resistance (Kawuki et al, 2016)

Cotton Gossypium barbadense L. High fibre quality (Zamir, 2001; Shi et al, 2008)

Barnyard millet,
Japanese millet

Echinochloa crus-galli (L.) P. Beauv.
Echinochloa frumentacea Link

High yield (Sood et al, 2015)

Finger millet Eleusine africana Kenn.-O’ Byrne High yield (Dida and Devos, 2006)

Barley Hordeum bulbosum L. Barley mild mosaic virus resistance (Walther
et al, 2000; Ruge et al, 2003; Wendler et al,
2015); barley yellow dwarf virus
resistance (Scholz et al, 2009; Wendler et al,
2015) barley yellow mosaic virus
resistance (Ruge-Wehling et al, 2006);leaf rust
resistance (Shtaya et al, 2007; Johnston et al,
2013; Park et al, 2015); leaf scald
resistance (Pickering et al, 2006); powdery
mildew resistance (Pickering and Johnston,
2005; Johnston et al, 2009); stem rust
resistance (Fetch-Jr et al, 2009); potential use for
soil salinity tolerance (Tavili and Biniaz, 2009);
potential use for high yield (Kakeda et al, 2008)

Rice Oryza eichingeri Peter Potential use for brown planthopper resistance,
green leafhopper resistance and white backed
planthopper resistance (Jena, 2010),
submergence tolerance (Atwell et al, 2014)

Oryza barthii A.Chev. Potential use for drought tolerance (Atwell et al,
2014)

Oryza glaberrima Steud. rapid leaf canopy establishment (Jones et al,
1997); drought tolerance (Hajjar and Hodgkin,
2007); iron tolerance, potential for acid soil
tolerance (Brar, 2004); potential for heat
tolerance (Atwell et al, 2014)

Oryza longistaminata A. Chev. & Roehr. Drought tolerance (Hajjar and Hodgkin, 2007);
yield improvement (Brar, 2004); bacterial blight
resistance (Brar, 2004; Jena, 2010)

Continued on next page
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Table 2 continued
Crop CWR Confirmed and potential use

Oryza punctata Kotschy ex Steud. Potential use for drought resistance (Atwell et al,
2014); brown planthopper resistance and zigzag
leafhopper resistance (Jena, 2010)

Sorghum Sorghum purpureosericeum (Hochst. ex A.
Rich.) Schweinf. & Asch.

Sorghum shoot fly resistance (Nwanze et al,
1990)

Sorghum bicolor subsp. verticilliflorum (L.)
Moench

Leaf rust resistance (Park et al, 2015); spot
blotch resistance (Yun et al, 2006); stem rust
resistance (Fetch-Jr et al, 2009); drought
tolerance (Nevo and Chen, 2010); seed
weight (Pillen et al, 2004)

Common bean,
kidney bean

Phaseolus vulgaris var aborigineus
(Burkart) Baude

Drought tolerance (Blair et al, 2016); plant
height, seed size (Blair et al, 2006); yield
improvement (Wright and Kelly, 2011); bruchid
resistance (Osborn et al, 2003); common
bacterial blight resistance, web blight
resistance (Beaver et al, 2012); white mold
resistance (Mkwaila et al, 2011); potential for
bean rust resistance (Acevedo et al, 2006);
potential for fusarium root rot resistance (de Ron
et al, 2015)

Cowpea Vigna unguiculata subsp. dekindtiana
(Harms) Verdc.

Pod bug resistance (Timko and Singh, 2008)

Vigna unguiculata var. spontanea
(Schweinf.) Pasquet

Yield improvement (Andargie et al, 2014)

Vigna unguiculata subsp. stenophylla
(Harv.) Marechal & al.

Potential for aphid resistance (Badiane et al,
2014)

Wheat Triticum turgidum L. Stripe rust resistance, powdery mildew
resistance (Chaudhary et al, 2014)
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Discussion

Adejuwon (2000) reported that 20 species of plants
in Nigeria were extinct, 431 were endangered species
while 20 were vulnerable. Urbanization, soil degrada-
tion, natural calamities, deforestation, forest fires, over-
grazing and other anthropogenic activities, particularly
climate change, are reducing the availability of CWR
for sustainable agricultural productivity (Maxted et al,
1997; Moore et al, 2008; Mounce et al, 2017). For
an effective and sustainable regional conservation strat-
egy and its subsequent implementation, a priority CWR
inventory is essential. A CWR inventory serves as a guide
for a sustainable conservation action plan. The outcome
of this research will form the blueprint for a system-
atic conservation and use strategy for West Africa. It will
provide a starting point for a coordinated policy in the
conservation and sustainable utilization of CWR diver-
sity in the West African region. In this study, 379 taxa
were identified as priority plant taxa, of which 122 were
subsequently prioritized for urgent active conservation
action. The remaining 257 plant species and their CWR
could be considered for active conservation in the future
as and when resources become available.

CWR of socio-economic valuable crops in West
Africa have been reportedly used in crop improvement.
For instance, Sood et al (2015) reported the use of
E. crusgalli (P. Beauv) and E. frumentacea (Link) to
increase yield quality in Barnyard millet. D. abysinica
(Hochst ex Kunth) and D. praehensilis have been
reported to show resistance to yam mosaic virus and
anthracnose , while D. bulbifera showed resistance to
yam nematode and tolerance to drought (Lopez-Montes
et al, 2012). Similarly, Kawuki et al (2016) reported
the use of M. esculenta subsp. peruviana Crantz, M.
carthagenensis subsp. glaziovii (Müll. Arg.) Allem, M.
dichotoma Ule and M. esculenta subsp. flabellifolia Crantz
in breeding against cassava brown streak disease in
cassava (Table 2). Traits for drought tolerance (Hajjar
and Hodgkin, 2007), yield improvement (Brar, 2004)
and bacterial blight resistance (Brar, 2004; Jena,
2010) have been transferred from O. longistaminata
A. Chev. & Roehr. to rice, while O. glaberrima Steud.
has been reported to show drought tolerance (IRRI,
2006), iron tolerance (Brar and Khush, 2002), rapid
leaf canopy establishment (Jones et al, 1997) and
potential for tolerance to acid soil (Brar and Khush,
2002) and heat (Atwell et al, 2014). Also, S. bicolor
subsp. verticillifolia (L.) Moench has reportedly shown
resistance to leaf rust (Park et al, 2015), spot blotch (Yun
et al, 2006), stem rust (Fetch Jr et al, 2009) and
tolerance to drought (Nevo and Chen, 2010). Resistance
to white mold (Mkwaila et al, 2011), bruchids (Osborn
et al, 2003), common bacterial blight and web
blight (Beaver et al, 2012), and tolerance to drought
have been documented in Phaseolus vulgaris var,
aborigineus L. Chaudhary et al (2014) reported stripe
rust and powdery mildew resistance in T. turgidum L.
(Table 2).

Maxted et al (2015) and Kell et al (2017) have opined
that regional conservation is supplemental to national
efforts as some CWR may be lacking in some countries
in a region. West Africa, being a region dominated
by agricultural nations, will find the implementation
of the conservation plan from this inventory useful,
as it will enhance the region’s global relevance in
agricultural productivity. As reported by Maxted et al
(2008) and Engels and Thormann (2020), collaboration
by neighboring nations could enhance the extensive
and effective conservation of CWR genetic diversity.
It is therefore the collective responsibilities of the
neighboring nations where this CWR diversity is found
to regionally conserve it (Maxted et al, 2008, 2015; Kell
et al, 2017; Allen et al, 2019).

Conclusion

This study shows that West Africa harbours CWR
diversity that can contribute significantly to sustainable
agricultural development in the region. Kell et al (2015)
noted that countries should widen their utilization
of CWR across national boundaries and all nations
are inter-independent in the quest for food security.
Similar to an existing CWR inventory for the North
African region (Lala et al, 2018), the CWR checklist,
prioritization and prioritized inventory presented in
the study will help in the development of a CWR
conservation plan for West Africa. The conservation
and utilization of CWR in this inventory for crop
improvement has the potential to significantly reduce
the over-dependence on synthetic agrochemicals and
fertilizers in the region, which negatively impacts on
its biodiversity and agricultural productivity. There is
an urgent need to take a systematic and pragmatic
approach in the conservation and sustainable utilization
of CWR diversity in West Africa to ensure food security.
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