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Biochemical characteristics of bread wheat genotypes 
related to SSR markers in moisture stress conditions

Abstract: Wheat is one of the oldest and most important staple crops worldwide, facing various biotic and abiotic stresses 
that affect its productivity. This study examines microsatellite markers related to grain yield, biochemical traits and drought 
tolerance indices in 25 wheat genotypes. The experiment was set up based on the randomized complete block design with 
three replications under rainfed and irrigated conditions. Combined variance analysis revealed significant differences among 
genotypes. Principal component analysis identified drought-tolerant genotypes (6, 10, 15, 18, 13, Pishtaz) linked to superior 
yield, stress indices, and antioxidant activity under rainfed conditions. Polymorphic SSR markers revealed key associations: 
XCFD168 with catalase, XGWM350 with ascorbic peroxidase (both under rainfed conditions), and XGWM136 with yield 
in irrigated conditions and multiple stress indices. Marker XGWM410(a1) was associated with yield in both environments, 
catalase in irrigated conditions, and multiple indices. Marker XGWM2(a2) was linked to yield in irrigated conditions, ascorbic 
peroxidase in rainfed conditions, and abiotic tolerance index, while XGWM124(a2) was associated with yield, superoxide 
dismutase in rainfed conditions, and multiple indices. The study identifies these genotypes as top candidates for drought 
tolerance due to their high yield and optimal biochemical responses under stress. Furthermore, key molecular markers – 
XCFD168, XGWM350, XGWM136, XGWM124(a2), XGWM410(a1), and XGWM2(a2) – associated with biochemical and yield 
traits are prioritized for marker-assisted selection to enhance drought tolerance and yield stability in breeding programmes.
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Introduction

Wheat (Triticum aestivum L.) contributes to approximately 
one-third of the global food supply. The Food and Agriculture 
Organization of the UN (FAO) estimates that by 2050, 
an annual production of around 840 million tonnes of 
wheat will be required (Ma et al, 2022). However, wheat 
production is increasingly affected by various biotic and 
abiotic stresses that reduce crop yield and productivity. 
Among these, drought stress stands out as a major abiotic 
challenge, posing a significant threat to global food security, 
especially in the context of climate change (Sunil kumar et 

al, 2023). As a result, there is a critical need to identify and 
cultivate drought-tolerant, high-yielding genotypes to ensure 
sustainable food production and meet the demands of a 
growing global population (Galal et al, 2023). Drought stress 
in wheat triggers morphological, physiological, biochemical 
and molecular changes (Gupta et al, 2024; Rashid et al, 
2022). Utilizing selection factor indicators can significantly 
improve the identification of genotypes that perform 
well in both optimal and stress conditions. A promising 
strategy to enhance wheat drought tolerance is to improve 
its antioxidant defense mechanisms (Gupta et al, 2024). 
Antioxidant enzymes are critical in protecting plants from 
oxidative damage caused by various environmental stresses.

Molecular markers associated with biochemical 
parameters can significantly expedite the identification of 
tolerant genetic materials in breeding programmes. The 
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simple sequence repeat (SSR) marker system is highly 
effective for detecting significant marker–trait associations 
in wheat germplasm (Pour-Aboughadareh et al, 2022). SSRs, 
also known as microsatellites, are short, tandemly repeated 
DNA sequences (typically 1–6 nucleotides in length) that 
are distributed genome-wide, exhibiting high polymorphism 
due to replication slippage in non-coding regions (Ellegren, 
2004). Because of their multi-allelic nature, co-dominant 
inheritance, uniform genomic distribution and simple 
detection methodology, these markers are widely favoured 
for assessing genetic variation and analyzing population 
structures (Jabari et al, 2023; Ahmed et al, 2024).

Exploring the genetic foundations of quantitative traits 
in crops and understanding the relationship between DNA 
polymorphisms and phenotypic variations are essential for 
plant breeding programmes. Identifying quantitative trait loci 
(QTLs) linked to drought tolerance through marker-assisted 
selection is particularly important for crop improvement and 
represents a valuable strategy for boosting wheat yield (Zhao 
et al, 2023). Multivariate regression analysis (MRA) offers a 
fast and effective approach for establishing the association 
between traits and markers. A significant benefit of MRA is its 
capacity to pinpoint loci associated with quantitative traits. 
Furthermore, this method is both time-efficient and cost-
effective (Vaillancourt et al, 2008) and does not require the 
creation of specialized populations for mapping.

The genetic diversity of 18 wheat genotypes was evaluated 
for drought tolerance using 25 microsatellite markers 
alongside morpho-physiological traits. Findings revealed that 
integrating these two approaches enhanced the efficiency of 
the screening process and provided more reliable outcomes 
for improving drought tolerance in wheat (Ahmed et al, 
2023). A study investigating morphological, biochemical 
and genetic diversity for diagnosing salt tolerance in 18 
wheat genotypes using SSR markers highlighted significant 
findings. The stepwise regression analysis emphasized the 
importance of root dry matter, relative turgidity and their 
respective contributions to shoot dry matter. Out of 23 SSR 
primers analyzed, 17 exhibited polymorphisms (Al-Ashkar et 
al, 2020). An association analysis performed on wild relatives 
of wheat in drought stress conditions, using 24 SSR markers, 
identified eight and nine significant marker-trait associations 
(MTAs) in control and drought stress conditions, respectively. 
Notably, two MTAs were consistently observed in both growth 
conditions (Pour-Aboughadareh et al, 2022). A study on 
Iranian wheat varieties and landraces employed agronomic 
traits and drought tolerance indices to identify significant 
SNP loci associated with drought-tolerance characteristics. 
The findings revealed that association mapping based on 
multiple drought tolerance indices can be highly effective 
in identifying critical markers for drought tolerance and 
uncovering linked gene networks (Rabieyan et al, 2023). 
Additionally, a research evaluation combining genetic and 
phenotypic analyses was conducted to identify drought-
tolerant bread wheat genotypes using multivariate analysis 
techniques, including stepwise multiple linear regression. 
The results demonstrated that SSR markers were associated 
with nine agro-physio-biochemical traits, highlighting their 
utility as a valuable tool in the selection process for drought 
tolerance (Sallam et al, 2024a).

Despite these advances, very few studies have explored 
the association between molecular markers and biochemical 
traits whose activity increases in drought stress. Biochemical 

traits, like the accumulation of proline or antioxidants, are 
the measurable physiological responses of a plant to stress. 
Molecular markers are DNA sequences that can pinpoint 
the specific genes or genomic regions controlling these 
biochemical pathways (Oguz et al, 2022). Therefore, this 
research aimed to: (1) characterize bread wheat genotypes in 
terms of biochemical traits, grain yield, and drought tolerance 
indices, (2) analyze the impact of drought stress on wheat 
traits to enhance yield and drought tolerance, (3) evaluate 
the genetic diversity of wheat genotypes for drought tolerance 
using studied traits and SSR markers, and (4) investigate the 
association between the studied traits and indices with SSR 
markers and identify informative markers associated with 
grain yield, biochemical traits, and drought tolerance indices 
in wheat in both rainfed and irrigated conditions.

Materials and methods
Field experiment

Twenty-five bread wheat genotypes were evaluated, 
including two cultivars (Pishtaz and Pishgam) as controls, 
and 23 accessions of bread wheat (Table 1). The genotypes 
were sourced from the genebank of Karaj Seedling and 
Seed Breeding Research Institute, Iran. Field experiments 
were conducted during the 2018–2019 growing season 
using a randomized complete block design with three 
replications under rainfed and irrigated conditions in a 
cold Mediterranean climate (34°21'N, 47°9'E; altitude: 
1,319m; mean annual rainfall: 430–460mm) in Iran. Each 
experimental plot consisted of five rows, each with a length 
of 2m, row spacing of 23cm, and a planting density of 400 
seeds per square metre. The planting date (14 November 
2018) coincided with the first irrigation, but no irrigation 
was provided to the rainfed plots during the growth 
period. The total rainfall during the experimental year was 
401.51mm. For the irrigated treatment, three additional 
irrigations were applied: The first on 15 May, at the heading 
stage (50% spike emergence). The second in late May, after 
full spike emergence. The third on 14 June, during the seed 
milking stage. No chemical fertilizers were applied during the 
experiment, and weeding was performed manually.

Molecular experiment

For molecular evaluation of the studied genotypes, 20 
pairs of SSR markers were utilized. DNA was extracted from 
two- to three-week-old seedlings grown from seeds using the 
cetyltrimethylammonium bromide (CTAB) method, based on the 
modified protocol of Doyle and Doyle (1987), in bulk. Genomic 
DNA was extracted from 50 mg of cryogenically homogenized 
tissue. Samples were suspended in 800μl extraction buffer 
(100ml containing: 4g CTAB, 16.36g NaCl, 3.15g Tris-HCl, 1.48g 
EDTA, and 400μl β-mercaptoethanol; pH 8.0) and incubated at 
65°C for 30 min. After adding 800μl chloroform-isoamyl alcohol 
(24:1), samples were vortexed for 60 min, centrifuged (13,000 
× g, 15 min), and the aqueous phase was transferred to fresh 
tubes. This phase was mixed with 500μl cold isopropanol and 
held at -20°C for 2 hours. Subsequent centrifugation (13,000 
× g, 15 min) yielded DNA pellets, which were washed twice 
with 500μl cold 80% ethanol (brief centrifugation, supernatant 
removal). Pellets were air-dried and resuspended in 100μl 
nuclease-free H2O. Extracted genomic DNA was evaluated by 
0.8% agarose gel electrophoresis.
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Table 1. List of bread wheat planting materials used for the study. 
IR, Iran; US, United States of America.

Genotype 
number

Genotype number 
and name

Origin

1 WC-4924 Kalat, IR

2 WC-4582 Kermanshah, IR

3 WC-4592 Kermanshah, IR

4 WC-47341 Montana, US

5 WC-4965 Kashan, IR

6 WC-4840 Sarakhs, IR

7 WC-4958 Badranloo, IR

8 WC-47399 Bulgaria 

9 WC-4600 Kermanshah, IR

10 WC-4987 Unknown, IR

11 WC-47615 Mexico 

12 WC-4612 Kordestan Babrar, IR

13 WC-5001 Unknown, IR

14 WC-4994 Unknown, IR

15 WC-47638 Peru

16 WC-47583 Canada

17 WC-47522 Mexico

18 WC-47569 Minnesota, US

19 Pishtaz Pishtaz, IR

20 Pishgam Pishgam, IR

21 WC-47640 Minnesota, US

22 WC-47467 Mexico

23 WC-4553 Kerend, IR

24 WC-4583 Kermanshah, IR

25 WC-4554 Kerend, IR

Polymerase Chain Reaction (PCR) was conducted in three 
temperature-dependent steps. DNA samples diluted to 10ng/
µl were amplified using 20 primer pairs (primer sequences 
are provided in Table 2). PCR was performed in 20µl reaction 
volumes using a Bio-Rad thermocycler. 

The PCR products were electrophoresed on a 3% agarose 
gel in 1x TBE buffer, stained with 10µl safe stain. DNA bands 
were visualized using a Quantum ST4 Gel Documentation 
system. As not all samples were loaded on the same gel, a 
100–1500bp DNA size marker (producing 11 bands) was 
included. Band presence was scored as ‘1’ and absence as ‘0’, 
compiling the data into a matrix. Alleles detected in genotypes 
were designated a, b, c, and d for each marker. This matrix 
served as the foundation for subsequent statistical analyses 
based on electrophoretic band pattern.

Biochemical enzyme assays

Measurement methods of the biochemical traits were 
carried out as follows. Extraction buffer preparation: A 
200ml Tris-HCl extraction buffer (pH 8.0) was prepared by 
dissolving 2.428g of Tris and 0.2g of PVP in 40ml of distilled 
water. The solution’s pH was then adjusted to 8.0 using HCl, 
and the final volume was brought to 200ml with distilled 
water. The prepared buffer was stored at 4°C, protected from 
light with aluminium foil.

Enzyme extraction: Flag leaf samples were ground into a 
fine powder in liquid nitrogen. Subsequently, 250mg of the 
homogenized powder was combined with 1ml of the pre-
cooled extraction buffer in a 2ml microtube. The mixture was 
vortexed for 30 seconds and then incubated at 4°C for 12 
hours. During this incubation period, the samples underwent 
two additional 30-second vortexing steps at 2-hour intervals. 
Following incubation, the homogenate was centrifuged 
at 13,000 × g for 15 minutes at 4°C. The resulting clear 
supernatant was carefully collected for the subsequent 
analysis of soluble protein content and antioxidant enzyme 
activities (Ramachandra Reddy et al, 2004). Meanwhile, 
the BioTek PowerWave XS2 microplate reader was used to 
measure biochemical traits.

Peroxidase Activity (POD) was assayed according to 
the method of Chance and Maehly (1995) with slight 
modifications by combining 6.6μl of diluted enzyme extract 
(1:4) with 200μl of substrate solution [408.71μl guaiacol 
+ 78.3μl 0.9 M H2O2 in 50mM potassium phosphate buffer 
(pH 7.0)]. After a 15-minute incubation, absorbance was 
measured at 470nm every 30s.

Superoxide Dismutase Activity (SOD) was assayed 
following the method of Beauchamp and Fridovich (1971). 
The assay solution consisted of 50 mM potassium phosphate 
buffer (pH 7.8), 12.26mg nitroblue tetrazolium (NBT), 
387.92mg L-methionine, 1mM EDTA, and 0.04mM riboflavin 
(stored in light-protected containers). For the assay, 196, 
197, 198, and 199μl of extraction buffer were mixed with 4, 
3, 2, and 1μl of diluted enzymatic extract (1:4), respectively, 
to achieve 200μl reaction mixtures. These mixtures were 
transferred to a 96-well microplate, followed by addition of 
10μl riboflavin solution under dark conditions. After 30 min 
illumination in a light chamber, absorbance was measured at 
560nm.

Catalase Activity (CAT) was assayed according to the 
method of Sinha (1972) with slight modifications. The assay 
was performed by combining 1.5μl of diluted enzymatic 
extract (1:4) with 150μl of 50 mM phosphate buffer (pH 
7.0). The reaction was initiated by adding 75μl of 0.32 
mM hydrogen peroxide solution. At timed intervals (2, 4, 6 
and 8 min post-initiation), 62μl of dichromate reagent was 
rapidly added to each tube with immediate vortexing. Tubes 
were transferred to a preheated 95°C water bath for 10 min. 
After chromogenic development (green-to-yellow gradient), 
samples were centrifuged at (10,000g, 5 min), and the 
supernatant absorbance was measured at 570 nm.

Ascorbic Peroxidase Activity (APX) was assayed according 
to the method of Nakano and Asada (1981). The reaction 
was initiated by adding 50μl of the enzymatic extract to 1ml 
of an assay solution containing 50 mM potassium phosphate 
buffer (pH 7.0), 0.1 mM EDTA, 0.5 mM ascorbic acid (ASA), 
and 0.15 mM hydrogen peroxide (H2O2). Absorbance at 290 
nm was recorded every 10 s for 1 min.

Soluble Protein Concentration (PROTEIN) was determined 
using the method of Bradford (1976). For the assay, 1μl of the 
extracted sample was mixed with 200μl of freshly prepared 
Coomassie Brilliant Blue G-250 dye reagent. After 15 min 
incubation, absorbance at 595nm was measured, with dye 
reagent as the blank. Protein concentration was calculated 
from a bovine serum albumin (BSA) standard curve (0-
1,500μg/ml). 
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Table 2. SSR primers used to assess the genetic diversity of bread wheat genotypes.

ReferencesBand sizeGC%TM (5'-3') Sequence  NameNo.

Haque et al (2020); 
Bavandpouri et al (2025)

150bp47.6575' ACCTCATCCACATGTTCTACG 3'XGWM350-7D-F1

64.75' GCATGGATAGGACGCCC 3'XGWM350-7D-R

Rosewarne et al (2013);  
Halder et al (2023)

100bp30505' AATTTCAAAAAGGAGAGAGA 3'XGWM334-6A-F2

305' AACATGTGTTTTTAGCTATC 3'XGWM334-6A-R

Ahmed et al (2020); 
El-Rawy and Hassan (2021)

100bp55.6585' CAATCATTTCCCCCTCCC 3'XGWM155-3A-F3

36.45' AATCATTGGAAATCCATATGCC 3'XGWM155-3A-R

El-Rawy and Hassan (2021); 
El-demery et al (2022); 
Firouzian et al (2023)

150bp31.8565' ATGGCATAATTTGGTGAAATTG 3'XGWM577-7B-F4

36.45' TGTTTCAAGCCCAACTTCTATT 3'XGWM577-7B-R

Batool et al (2018);  
Ilyas et al (2020)

200bp5552.55' AGTGGCTGGGAGAGTGTCAT 3'XGWM70-6B-F5

61.65' GCCCATTACCGAGGACAC 3'XGWM70-6B-R

Islam et al (2012); 
Ahmed et al (2024) 

180–200bp45585' ACGGCGAGAAGGTGCTC 3'XGWM642-1D-F6

64.75' CATGAAAGGCAAGTTCGTCA 3'XGWM642-1D-R

Budak et al (2013); Kaur et 
al (2016); Khan et al (2021); 
Bavandpouri et al (2025)

250bp57.9525' GACAGCACCTTGCCCTTTG 3'XGWM136-1A-F7

52.65' CATCGGCAACATGCTCAT 3'XGWM136-1A-R

Amalova et al (2024); 
Bavandpouri et al (2025)

200bp61.157.55' GCCATGGCTATCACCCAG 3'XGWM124-1B-F8

455' ACTGTTCGGTGCAATTTGAG 3'XGWM124-1B-R

Choudhary et al (2016);  
Kumari et al (2025)

150bp4558.55' TGTTGCGGATGGTCACTATT 3'XGWM265-2A-F9

52.45' GAGTACACATTTGGCCTCTGC 3'XGWM265-2A-R

Maccaferri et al (2011);  
Naroui Rad et al (2012)

250bp61.6515' GCTTGAGACCGGCACAGT 3'XGWM410-2B-F10

555' CGAGACCTTGAGGGTCTAGA 3'XGWM410-2B-R

Ahmed et al (2020);  
El-Rawy and Hassan (2021)

200bp5050.65' TGCAGTGGTCAGATGTTTCC 3'XGWM165-4B-F11

455' CTTTTCTTTCAGATTGCGCC 3'XGWM165-4B-R

Mallick et al (2022a)250bp4052.55' GCTGATGCATATAATGCTGT 3'XGWM4-4A-F12

47.65' CACTGTCTGTATCACTCTGCT 3'XGWM4-4A-R

Islam et al (2012);  
Heidari et al (2024)

100bp4550.75' GGTTTTCTTTCAGATTGCGC 3'XGWM192-5D-F13

47.65' CGTTGTCTAATCTTGCCTTGC 3'XGWM192-5D-R

Mallick et al (2022a)100bp26.146.75' TCAAAACATAAATGTTCATTGGA 3'XGWM233-7A-F14

40.95' TCAACCGTGTGTAATTTTGTCC 3'XGWM233-7A-R

Ahmed et al (2020);  
Kumari et al (2025)

250bp5049.45' CTGCAAGCCTGTGATCAACT 3'XGWM2-3D-F15

355' CATTCTCAAATGATCGAACA 3'XGWM2-3D-R

Ahmed et al (2020);  
Mallick et al (2022a)

200bp57.959.55' TGCCCTGTCCACAGTGAAG 3'XCFD5-5B-F16

455' TTGCCAGTTCCAAGGAGAAT 3'XCFD5-5B-R

Ahmed et al (2020);  
Mallick et al (2022a)

250bp5550.65' TCAGTGGGCAAGCTACACAG 3'XGWM129-5A-F17

44.45' AAAACTTAGTAGCCGCGT 3'XGWM129-5A-R

Khan et al (2021);  
Bavandpouri et al (2025)

250bp45565' CTTCGCAAATCGAGGATGAT 3'XCFD168-2D-F18

505' TTCACGCCCAGTATTAAGGC 3'XCFD168-2D-R

Khan et al (2021);  
Mallick et al (2022b)

220–230bp50545' GAGTCCTGATGTGAAGCTGTTG 3'XGWM234-5B-F19

555' CTCATTGGGGTGTGTACGTG 3'XGWM234-5B-R

Ahmed et al (2020);  
Mallick et al (2022a)

100bp47.6595' GGAGTCACACTTGTTTGTGCA 3'XGWM33-1A-F20

45.55' CACTGCACACCTAACTACCTGC 3'XGWM33-1A-R
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differences were observed across various irrigated conditions 
for all characteristics. Genotypes showed significant variation 
for all traits except soluble protein. Furthermore, the 
genotype-by-irrigated interaction effect was significant for 
most biochemical traits, except for grain yield and malon-
dialdehyde. 

The mean comparison (mean of three replications) 
of genotypes based on the studied traits in rainfed and 
irrigated conditions, presented in the form of a bar graph, 
is as follows. Genotype 10 showed the highest grain yield 
under rainfed and irrigated conditions (Figure 1, Chart 
GY) with values of 424.73 and 565.75, respectively. The 
maximum peroxidase (POD) activity in rainfed and irrigated 
conditions was observed in genotype 6 (0.49) and genotype 
18 (0.34), respectively (Figure 1, Chart POD). For superoxide 
dismutase (SOD), the highest values in rainfed and irrigated 
conditions belonged to genotype 15 (1.02) and genotype 12 
(0.64), respectively (Figure 1, Chart SOD). Catalase (CAT) 
activity was most significant in genotype 12 (3.01) in rainfed 
conditions and genotype 24 (1.56) in irrigated conditions 
(Figure 1, Chart CAT). The highest soluble protein content 
was found in genotype 14 (112.03) in rainfed conditions and 
genotype 12 (167.09) in irrigated conditions (Figure 1, Chart 
PROTEIN). Proline (PC) levels were highest in genotype 
15 (10.14) in rainfed conditions and genotype 8 (7.24) in 
irrigated conditions (Figure 1, Chart PC). The maximum 
ascorbic peroxidase (APX) activity was recorded for genotype 
6 (418.12) in rainfed conditions and genotype 15 (263.35) in 
irrigated conditions (Figure 1, Chart APX). Finally, the highest 
malondialdehyde (MDA) values in both conditions were 
observed in genotypes 23 and 24 (0.45) in rainfed conditions 
and genotype 23 (0.42) in irrigated conditions (Figure 1, 
Chart MDA). Complete information on the comparison of the 
mean genotypes for each trait is shown in Table 5.

Assessment of broad-sense heritability and genetic 
gain of studied traits in rainfed and irrigated 
conditions

The estimation of broad-sense heritability and genetic 
gain for grain yield and biochemical traits under rainfed 
conditions is summarized in Table 6. In rainfed conditions, 
the average broad-sense heritability and genetic gain for 
grain yield were 0.278 and 16.08%, respectively. Almost all 
biochemical traits exhibited heritability above 0.90, including 
PC (0.998), SOD (0.997), CAT (0.983), and APX (0.972). 
Among these, PC showed the highest heritability. For genetic 
gain, CAT (92.022%), SOD (89.91%), APX (67.62%), and PC 
(63.28%) were most significant, with CAT ranking highest. 
Under irrigated conditions, heritability and genetic gain for 
grain yield were 0.604 and 33.20%, respectively. The traits 
CAT (0.997), protein (0.989), PC (0.979), SOD (0.971), APX 
(0.966) and POD (0.929) all demonstrated high heritability 
(> 0.90), with CAT showing the highest value. Also, CAT 
exhibited the most significant genetic gain (133.7%), 
followed by SOD (86.9%), PC (83.19%), APX (80.39%). In 
both conditions, the MDA trait showed the lowest heritability 
and genetic gain.

Malon-Dialdehyde (MDA) was determined according to the 
method of Heath and Packer (1968). Briefly, 0.25g of wheat leaves 
were homogenized in 500μl ice-cold 1.0% (w/v) trichloroacetic 
acid (TCA) using a porcelain mortar. The homogenate was 
centrifuged at 10,000 × g for 5 min at 4°C. Subsequently, 250μl 
of the supernatant was reacted with 1mL of thiobarbituric acid 
(TBA) reagent [0.5% (w/v) TBA in 20% (w/v) TCA]. The 
mixture was incubated at 95°C for 30 min in a water bath, then 
immediately cooled on ice and centrifuged again (10,000 × 
g, 10 min, 4°C). A 200μl aliquot of the resulting chromogenic 
supernatant was transferred to a 96-wall microplate. Absorbance 
was measured at 532 and 600nm.

Proline Concentration (PC) was determined according 
to the method of Bates et al (1973). Briefly, 0.05g of fresh 
leaf tissue was homogenized in 1mL of ice-cold 3% (w/v) 
sulfosalicylic acid using a pre-chilled mortar. The homogenate 
was centrifuged at 4,000 × g for 15 min (4°C). A 10μl aliquot 
of the resulting supernatant was then reacted with 200μl of 
acid-ninhydrin reagent [1.25 g ninhydrin in 30ml glacial acetic 
acid + 20ml 6 M phosphoric acid] and 200μl of glacial acetic 
acid. Tubes were incubated at 95°C for 60 min, immediately 
cooled on ice for 5 min, and then mixed with 400μl toluene 
via 30-second vortexing. After a 20-minute phase separation 
at 25°C, the upper toluene layer was transferred to a 96-
well microplate. Absorbance was measured at 520nm with 
pathlength correction. Proline concentration was determined 
from a standard curve (0-20μg/ml).

Statistical analysis

Combined variance analysis based on the data obtained from 
the evaluation of 25 genotypes, including two cultivars and 
23 accessions, was performed to determine the contribution 
of the main effects of genotype, irrigated conditions, and 
their interaction using SAS 9.1.3 software. A comparison 
of mean genotypes by the Least Significant Difference 
(LSD) test was performed. A bar graph related to the mean 
comparison was drawn in Excel. PCA was calculated based 
on the means of traits and genotypes. Principal components 
analysis was carried out using the Minitab16 software, and 
correlations between the studied traits and indicators were 
analyzed using the “corrplot” package in R-Studio version 
4.5 (R Core Team, 2025). To analyze the differences among 
the studied genotypes using SSR molecular markers, analysis 
of molecular variance (AMOVA) was performed by GenAlex 
software version 6.502. The association between SSR markers, 
field-measured traits, and biochemical traits was analyzed 
using stepwise multiple regression in SPSS 26 software. Each 
quantitative trait was treated as a dependent variable, while 
the SSR markers served as independent variables. The studied 
traits and indices were measured in the field and molecular 
experiment section, as shown in Table 3.

Results
Analysis of combined variance and mean 
compression

The combined analysis of variance for grain yield and 
biochemical characteristics is presented in Table 4. Significant 
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Table 3. Measurement methods of the studied traits and indices. Yi: Yield of a genotype under irrigated conditions; Yr: Yield of a genotype 
under rainfed conditions;     : Mean yield of all genotypes under irrigated conditions;     : Mean yield of all genotypes under rainfed 
conditions;      : Genotypic variance;      : Phenotypic variance;     : Overall mean of the trait; TCP: Trait Changes Percentage; MTIC: Mean 
of the trait under irrigated conditions; MTRC: Mean of the trait under rainfed conditions. The PIC index for SSR markers was calculated 
based on allele frequency at each locus across all genotypes. In the calculation of the RP index, Pi refers to the proportion of genotypes 
that possess a particular band. Cov (x1x2): Covariance between variables x1 and x2. V(x1): variance of one trait (x1). V(x2):  variance of 
other trait (x2). 

Traits and Indices Measurement method and formulas

GY: Grain Yield The grain weight from three 1m sections of the middle rows per plot.

ATI: Abiotic Tolerance Index 
(Moosavi et al, 2008)

 

SSPI: Stress Susceptibility Percentage Index 
(Moosavi et al, 2008)  

TOL: Tolerance 
(Rossielli and Hamblin, 1981)  

MP: Mean Productivity 
(Rossielli and Hamblin, 1981)  

GMP: Geometric Mean Productivity 
(Fernandez, 1992)  

HMP: Harmonic Mean Productivity 
(Fernandez, 1992)  

STI: Stress Tolerance Index 
(Fernandez, 1992)

SSI: Stress Susceptibility Index 
(Fischer and Maurer, 1978)

PEV: Press Evaluation 
(Bouslama and Schapaugh, 1984)

RDY: Relative Decrease in Yield 
(Emre et al, 2011)

h2b.s , GG: broad-sense Heritability and  
Genetic Gain  
(Kearsey and Pooni (1996) and the GLM 
MANOVA analysis in SAS 9.3.1 software)  

Correlation  
(Miller et al, 1958)

TCP%: percentage of changes in the irrigated 
environment compared to rainfed for traits 
(Nourmand-moaied et al, 2001)

Polymorphic percentage  
(Mohammadi and Prasanna, 2003)

The number of polymorphic bands is divided by the total number of amplified 
bands and multiplied by 100.

PIC: Polymorphic Information Content Index 
(Anderson et al, 1993)

MI: Marker Index  
(Kumar et al, 2009)

The number of polymorphic bands was multiplied with the PIC value.

EMR: Effective Multiplex Ratio Index  
(Kumar et al, 2009)

This index was obtained by multiplying the percentage of polymorphic loci by the 
number of polymorphic loci.

RP: Resolving Power  
(Altintas et al, 2008)
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Table 4. Analysis of combined variance in both rainfed and irrigated conditions for grain yield and biochemical characteristics in 25 bread 
wheat genotypes. ns, not significant; *, significant at 5% probability level; **, significant at 1% probability level; S.O.V, Source of variations; 
Error 1, is nesting the replication in the irrigated factor; Error 2, is the total error of the experiment.

S.O.V df Grain yield Peroxidase 
activity

Superoxide 
dismutase 

activity

Catalase 
activity

Soluble 
protein

Proline 
content

Ascorbic 
peroxidase

Malon-
dialdehyde

Irrigated 1 470283.30** 0.37** 2.58** 33.22** 32924.41** 272.49** 489561.60** 0.05**

Error 1 4 21490.83 0.0003 0.0002 0.0004 11.35 0.02 178.19 0.001

Genotype 24 28250.64** 0.02** 0.17** 1.42* 1416.56ns 16.07** 21384.36* 0.005**

Genotype× 
Irrigated 24 6237.08ns 0.006** 0.05** 0.63** 855.42** 5.44** 8793.39** 0.001ns

Error 2 96 4496.36 0.001 0.0003 0.005 25.39 0.04 153.87 0.001

 (C.V) % 19.74 8.89 4.08 6.28 5.07 3.44 6.39 10.07

Figure 1. Bar graphs related to the comparison of mean genotypes in rainfed and irrigated conditions. GY, Grain Yield; POD, Peroxidase 
Activity; SOD, Superoxide Dismutase Activity; CAT, Catalase Activity; PROTEIN, Soluble Protein; PC, Proline Concentration; APX, Ascorbic 
Peroxidase Activity; MDA, Malon-dialdehyde.
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Analysis of trait-index correlations in wheat 
genotypes under rainfed and irrigated conditions

The correlation patterns between studied traits and 
drought tolerance indices revealed distinct profiles across 
conditions. Yield in irrigated conditions (Yi) showed strong 
positive correlations (p < 0.01) with rainfed Yield (Yr; 0.71) 
and the indices STI (0.92), MP (0.96), GMP (0.93), HMP 
(0.91), SSI (0.52), TOL (0.78), ATI (0.90), SSPI (0.78), and 
PEV (0.52), but exhibited a significant negative association 
with RDY (-0.92). Similarly, Yr demonstrated strong positive 
correlations with STI (0.91), MP (0.88), GMP (0.91), and 
HMP (0.94) (p < 0.01), while having a negative correlation 
with RDY (-0.91).  

In irrigated environments, POD activity correlated 
positively (p < 0.05) with its rainfed counterpart (0.44) 
and the indices STI (0.44), MP (0.41), GMP (0.43), and 
HMP (0.44), yet displayed a negative relationship with 
RDY (-0.44). SOD enzyme activity showed high consistency 
between the two conditions (irrigated vs. rainfed: 0.68; p < 
0.01). Rainfed SOD further correlated positively with STI 
(0.43), MP (0.41), GMP (0.43), and HMP (0.44) (p < 0.05) 
but negatively with RDY (-0.43). CAT activity also followed 
this pattern with significant concordance between irrigated 
and rainfed conditions (0.44; p < 0.05).  

For PC in irrigated conditions, inverse correlations 
appeared with STI (-0.50), MP (-0.48), GMP (-0.51), and 

Table 6. Estimation of broad-sense heritability and genetic gain for grain yield and biochemical characteristics in bread wheat genotypes 
in rainfed and irrigated conditions. GY, Grain Yield; POD, Peroxidase Activity; SOD, Superoxide Dismutase Activity; CAT, Catalase Activity; 
PROTEIN, Soluble Protein; PC, Proline Concentration; APX, Ascorbic Peroxidase Activity; MDA, Malon-dialdehyde.

Conditions Traits Mean h2
bs GG

Rainfed GY 283.75 0.278 16.08

POD 0.340 0.750 28.74

SOD 0.560 0.997 89.91

CAT 1.58 0.983 92.022

Protein 84.57 0.791 28.044

PC 6.79 0.998 63.28

APX 251.23 0.972 67.62

MDA 0.390 0.250 6.82

Irrigated GY 395.75 0.604 33.203

POD 0.240 0.929 42.18

SOD 0.300 0.971 86.9

CAT 0.640 0.997 133.7

Protein 114.2 0.989 42.932

PC 4.09 0.979 83.19

APX 136.98 0.966 80.39

MDA 0.350 0.250 5.373

HMP (-0.53) (p < 0.05/p < 0.01), in contrast to its positive 
linkage with RDY (0.50; p < 0.05). PC also aligned with its 
rainfed equivalent (0.51; p < 0.01) and showed negative 
associations with SSI (-0.47) and PEV (-0.47) (p < 0.05). 
APX and MDA activities maintained significant consistency 
between the two conditions (APX: 0.46, MDA: 0.69; p < 
0.05/p < 0.01).  

Inter-index correlations revealed tightly coupled networks: 
STI exhibited near-perfect positive alignment with MP (0.99), 
GMP (0.99), and HMP (0.99) (p < 0.01), moderate ties to 
ATI (0.69), TOL (0.49), and SSPI (0.49) (p < 0.05), and a 
complete inverse correlation with RDY (-1.00; p < 0.01). The 
MP, GMP, and HMP indices showed nearly identical mutual 
relationships (0.99–1.00; p < 0.01) and positive associations 
with ATI (0.64–0.74), TOL (0.44–0.56), and SSPI (0.44–
0.56) (p < 0.05/p < 0.01), while uniformly opposing RDY 
(-0.99 to -1.00; p < 0.01).  

SSI correlated strongly with PEV (1.00), TOL (0.93), SSPI 
(0.93), and ATI (0.80) (p < 0.01). TOL demonstrated positive 
linkages with SSPI (1.00), ATI (0.96), and PEV (0.93) (p < 
0.01) but a negative correlation with RDY (-0.49; p < 0.05). 
ATI correlated positively with SSPI (0.96) and PEV (0.80) (p 
< 0.01) and negatively with RDY (-0.69; p < 0.01). Finally, 
SSPI and PEV shared a strong positive correlation (0.93; p < 
0.01), while SSPI was inversely associated with RDY (-0.49; 
p < 0.05) (Figure 2).



Genetic Resources (2025), 6(12), 171–193180 Bavandpouri et al

Figure 2. Heatmaps of Pearson’s correlation coefficients between the studied characteristics and drought tolerance indices in 25 wheat 
genotypes in rainfed and irrigated conditions. Yi, Yield in irrigated conditions; Yr, Yield in rainfed conditions; i, irrigated; r, rainfed; POD, 
Peroxidase Activity; SOD, Superoxide Dismutase Activity; CAT, Catalase Activity; PROTEIN, Soluble Protein; PC, Proline Concentration; 
APX, Ascorbic Peroxidase Activity; MDA, Malon-dialdehyde; STI, Stress Tolerance Index; MP, Mean productivity; GMP, Geometric Mean 
Productivity; HMP, Harmonic Mean Productivity; SSI, Stress Susceptibility Index; TOL, Tolerance; ATI, Abiotic Tolerance Index; SSPI, Stress 
Susceptibility Percentage Index; PEV, Press Evaluation; RDY, Relative Decrease in Yield. Negative and positive correlations are indicated by 
red and blue cells, respectively. Color darkness scales with correlation strength (ǀ*r*ǀ) (Significance: *r* ≥ 0.40 at *p* < 0.05*; *r* > 0.50 
at **p* < 0.01).
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Principal components analysis and biplot 
graphic display based on drought tolerance 
indices and studied traits in rainfed conditions

PCA is calculated based on the mean of traits and 
genotypes. The results of both are shown in Figure 
3. The PCA result for traits is presented in Table 7. 
It demonstrates that the first four components, with 
eigenvalues greater than one, contributed the most to 
explaining the variance in the dataset. Specifically, the 
first component explained 42.303% of the variance. 
The second component accounted for 21.78%. The 
third component contributed 9.612%. The fourth 
component explained 7.353%. Together, these four 
components explained 81.05% of the variance.

The first component was characterized by positive 
and high coefficients for the grain yield trait and the 
MP, GMP, HMP, STI, ATI, TOL and SSPI indices, as well 
as negative and high coefficients for the RDY index. 
This component was labelled the drought-tolerant 
PCA. The second component had positive and high 
coefficients for the SSI, PEV, TOL, SSPI and ATI indices, 
along with negative and high coefficients for grain 
yield and the superoxide dismutase enzyme. This 

Figure 3. Biplot diagram of principal components analysis for drought tolerance indices and studied traits of wheat genotypes in rainfed 
conditions.

component was referred to as the drought-stress PCA. The 
third component showed positive and high coefficients for the 
soluble protein and proline traits, while having negative and 
high coefficients for the peroxidase and ascorbic peroxidase 
enzymes. The fourth component was defined by positive and 
high coefficients for the catalase enzyme activity and malon-
dialdehyde traits, and negative and high coefficients for 
proline and peroxidase enzyme. 

According to the data, a biplot of the first two principal 
components was generated to analyze the traits and 
indicators under investigation. Based on the biplot (Figure 
3), genotypes 10, 15, 6, 18, 13, and the Pishtaz cultivar, 
which were positioned near the vectors corresponding to the 
most effective drought tolerance indicators (MP, STI, GMP 
and HMP), demonstrated high yields in rainfed and irrigated 
conditions. Furthermore, in rainfed conditions, traits such 
as grain yield, superoxide dismutase activity, ascorbic 
peroxidase activity, proline content, malon-dialdehyde 
levels, and catalase enzyme activity were consistent with 
group A genotypes (those with high yield in both rainfed and 
irrigated conditions). Conversely, genotypes 22, 11, 4, 1, 5, 
3, 12 and 16 exhibited the lowest levels of drought tolerance 
based on the selected indices, particularly the RDY index.
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Determination of the genetic variability of 
wheat genotypes based on SSR markers

After evaluating 20 primer pairs across 25 bread wheat 
genotypes, 16 primers exhibiting high levels of polymorphism. 
33 out of 35 total bands, showed high polymorphism, 
(93.75%). On average, each primer produced 2 bands, with 
a mean polymorphism of 2 bands per primer. The highest 
number of alleles was detected with primer XGWM136 (five). 
The primers XGWM155, XGWM234, XCFD168, XGWM577, 
XGWM642 and XCFD5 exhibited the highest polymorphic 
information content indices. Among the molecular indices 
assessed, the highest marker index values were identified for 
primers XGWM136, XCFD168 and XGWM350. The primers 
XGWM136, XGWM350, XCFD168 and XGWM165 recorded 
the highest Effective Multiplex Ratio. Regarding Resolving 
Power, the primers XGWM4, XCFD168 and XGWM350 showed 
the highest values (Table 8). The SSR markers banding 
pattern generated by the XGWM2, XGWM124, XGWM4, and 
XCFD5 primers for the wheat genotypes examined in this 
study is illustrated in Figure 4A–D.

Table 7. Principal components analysis of 25 wheat genotypes in rainfed conditions. GY, Grain Yield; POD, Peroxidase Activity; SOD, 
Superoxide Dismutase Activity; CAT, Catalase Activity; PROTEIN, Soluble Protein; PC, Proline Concentration; APX, Ascorbic Peroxidase 
Activity; MDA, Malon-dialdehyde; STI, Stress Tolerance Index; MP, Mean productivity; GMP, Geometric Mean Productivity; HMP, Harmonic 
Mean Productivity; SSI, Stress Susceptibility Index; TOL, Tolerance; ATI, Abiotic Tolerance Index; SSPI, Stress Susceptibility Percentage 
Index; PEV, Press Evaluation; RDY, Relative Decrease in Yield.

Traits and indices Component 1 Component 2 Component 3 Component 4

GY 0.266 -0.330 0.085 -0.030

POD 0.008 0.070 -0.494 -0.344

SOD 0.138 -0.234 -0.124 0.170

CAT -0.010 -0.153 -0.135 0.604

Protein -0.069 0.097 0.592 0.077

PC 0.034 -0.092 0.345 -0.489

APX 0.097 -0.178 -0.469 -0.197

MDA 0.036 0.005 -0.064 0.441

STI 0.341 -0.155 0.052 -0.023

MP 0.349 -0.120 0.064 -0.002

GMP 0.342 -0.151 0.064 -0.010

HMP 0.334 -0.182 0.063 -0.018

SSI 0.179 0.429 -0.044 -0.001

TOL 0.270 0.332 -0.016 0.050

ATI 0.318 0.227 -0.009 0.055

SSPI 0.270 0.332 -0.016 0.050

PEV 0.179 0.429 -0.044 -0.001

RDY -0.341 0.155 -0.052 0.023

Eigenvalues 7.61 3.92 1.73 1.33

% of variance 42.303 21.78 9.612 7.353

Cumulative % 42.303 64.08 73.691 81.05

Molecular variance analysis

The molecular variance analysis (AMOVA) for the SSR markers 
is presented in Table 9. Accordingly, a significant difference 
between the groups was observed at the 5% probability level. 
The proportion of variance attributed to intergroup differences 
was 10%, while intragroup variance accounted for 90%.

Investigating the relationship of studied 
characteristics and indices with SSR markers

The critical step in this process is assessing the efficiency 
of linkage markers associated with quantitative traits 
and identifying informative markers. To pinpoint alleles 
influencing grain yield, biochemical traits and drought 
tolerance indices in wheat genotypes under irrigated and 
rainfed conditions, an association analysis was conducted. 
This analysis examined the relationship between eight 
measured traits and ten indices (as dependent variables) and 
the molecular markers under study (as independent variables) 
using stepwise multiple regression analysis (Table 10, Table 
11 and Table 12). The relationship with SSR markers was 
analyzed exclusively for characteristics that were statistically 
significant in the variance analysis.
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Table 8. Molecular characteristics of more effective SSR primers in bread wheat genetic diversity in the present study.

Marker No. of polymorphic 
bands

Polymorphic information 
content

Marker 
Index

Effective multiplex 
ratio

Resolving 
Power

XGWM350 3 0.337 1.011 3 3.12

XGWM155 1 0.499 0.499 1 0.96

XGWM577 2 0.467 0.934 2 1.60

XGWM642 1 0.461 0.23 0.5 0.72

XGWM136 5 0.352 1.76 5 2.32

XGWM165 3 0.324 0.973 3 2.96

XGWM4 2 0.211 0.422 2 3.52

XCFD5 2 0.442 0.883 2 1.76

XCFD168 3 0.489 1.466 3 3.20

XGWM234 1 0.493 0.493 1 0.88

Figure 4. Patterns of some SSR markers used in the present study in wheat genotypes. A, XGWM2 primer; B, XGWM124 primer; C, XGWM4 
primer; D, XCFD5 primer.

Table 9. Molecular variance analysis (AMOVA) of wheat genotypes. *, significant at 5% probability level.

Predicted 
Group

Source of 
variation df SS MS Estimated 

variance
Percentage of total 

variance
φPT

4

Among Groups 3 25.85 8.62 0.68 10 0.039*

Within Groups 21 126.83 6.04 6.04 90

Total 24 152.68 6.72 100
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Grain yield and biochemical characteristics in rainfed 
conditions

The analysis identified two markers, XGWM124(a2) and 
XGWM410(a1), as significantly related to yield in rainfed 
conditions, explaining 34% of the variation (Table 10). 
Additionally, the marker XGWM124(a2) showed a strong 
correlation with superoxide dismutase enzyme activity in 
rainfed conditions, accounting for 12% of the variation. The 
catalase enzyme activity was notably associated with the marker 
XCFD168(a3), contributing 16% to the observed variance. 
Similarly, the ascorbic peroxidase enzyme activity displayed 
significant associations with three markers (XGWM2(a1), 
XGWM234(a1), and XGWM350(a2)), collectively explaining 
52% of the variance. Moreover, a single locus amplified by 
the marker XGWM155(a1) was significantly associated with 
the malon-dialdehyde trait, accounting for 18% of the total 
variation. Overall, eight gene loci were identified as being 
associated with yield and biochemical characteristics in rainfed 
conditions. Notably, the XGWM124(a2) marker was shared 
between grain yield and the superoxide dismutase enzyme 
activity, highlighting its importance. 

Grain yield and biochemical characteristics in 
irrigated conditions

The analysis revealed that grain yield was significantly 
correlated with seven amplified loci, including XGWM577(a2, 
a1), XGWM136(a3, a4), XGWM265(a1), XGWM410(a1), 
and XGWM2(a2) (Table 11). Among these, the loci 
XGWM136(a3), XGWM577(a2), and XGWM410(a1) 
demonstrated the most significant and positive effects. The 
marker XCFD5(a2) was significantly associated with the 
superoxide dismutase trait in irrigated conditions, explaining 
17% of the variation. For the catalase enzyme activity, the 
marker XGWM410(a1) contributed 13% to the total variance. 
Altogether, nine gene loci were identified as being linked to 
yield and biochemical characteristics in irrigated conditions. 
Notably, the XGWM410(a1) marker was shared between 
grain yield and the catalase enzyme activity, underlining its 
importance. 

Table 10. Markers association with grain yield and biochemical characteristics in rainfed conditions. *, significant at 5% probability level; 
**, significant at 1% probability level; † a1, a2, a3, a4, and a5 are the average alleles 1, 2, 3, 4, and 5, respectively.

Traits Marker† Regression 
coefficient (B)

Standard error
(SE)

t-value Significance 
level

R2 Adjusted R2

Grain Yield Constant 320.44 17.871 17.931 ** 0.397 0.342

XGWM124(a2) -68.482 20.944 -3.27 **

XGWM410(a1) 52.57 22.02 2.39 *

Ascorbic 
Peroxidase

Constant 84.99 43.78 1.94 ns 0.583 0.523

XGWM2(a1) 120.18 30.36 3.96 **

XGWM234(a1) -80.304 24.72 -3.25 **

XGWM350(a2) 114.60 44.99 2.55 *

Malon-dialdehyde Constant 0.402 0.009 43.67 ** 0.217 0.183

XGWM155(a1) -0.034 0.013 -2.53 *

Catalase Activity Constant 1.24 0.197 6.27 ** 0.193 0.158

XCFD168(a3) 0.62 0.264 2.35 *

Superoxide 
Dismutase Activity

Constant 0.716 0.086 8.34 ** 0.161 0.124

XGWM124(a2) -0.212 0.101 -2.1 *
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Table 11. Markers association with grain yield and biochemical characteristics in irrigated conditions. *, significant at 5% probability level; 
**, significant at 1% probability level; † a1, a2, a3, a4, and a5 are the average alleles 1, 2, 3, 4, and 5, respectively..

Traits Marker† Regression 
coefficient (B)

Standard 
error (SE) t-value Significance 

level R2 Adjusted R2

Grain Yield Constant 374.72 12.76 29.37 ** 0.885 0.838

XGWM577(a2) 145.7 19.04 7.653 **

XGWM136(a3) 171.744 33.4 5.143 **

XGWM265(a1) -122.541 26.084 -4.7 **

XGWM410(a1) 89.64 18.29 4.902 **

XGWM2(a2) -62.8 18.43 -3.41 **

XGWM577(a1) -58.85 16.294 -3.612 **

XGWM136(a4) -79.04 29.13 -2.713 *

Superoxide 
Dismutase Activity

Constant 0.233 0.036 6.513 ** 0.206 0.171

XCFD5(a2) 0.113 0.046 2.44 *

Catalase Activity Constant 0.55 0.089 6.13 ** 0.163 0.126

XGWM410(a1) 0.39 0.183 2.12 *

Drought tolerance indices

The analysis identified a significant correlation between 
the ATI index and six amplified loci: XGWM136(a3, 
a4), XGWM577(a2), XGWM2(a2), XGWM410(a1) and 
XGWM265(a1), collectively explaining 84% of the total 
variance (Table 12). The TOL and SSPI indices were 
significantly associated with the markers XGWM136(a3, 
a4), XGWM265(a2), XGWM577(a2) and XGWM165(a2), 
accounting for 72% of the variation. Additionally, the MP, 
GMP and HMP indices demonstrated strong associations 
with three loci amplified by the markers XGWM124(a2), 
XGWM410(a1) and XGWM165(a1), explaining 57%, 57% 
and 56% of the total variation, respectively. The SSI and 
PEV indicators were significantly linked to the markers 
XGWM136(a3, a4) and XGWM265(a2), accounting for 
51% of the variance. Furthermore, the STI and RDY indices 
showed significant associations with two loci amplified 
by the markers XGWM124(a2) and XGWM410(a1), 
each explaining 48% of the variation. Among these, the 
XGWM410(a1) marker exhibited the most substantial 
positive effect on the STI index, while the XGWM124(a2) 
marker had the strongest impact on the RDY index. Overall, 
35 gene loci were identified for the drought tolerance 
indicators, with 10 gene loci being common across all 
measured indices.

Discussion

Significant differences in most of the studied characteristics 
highlighted the genetic diversity among wheat genotypes. This 
diversity suggests the potential to select superior cultivars 
based on grain yield and biochemical characteristics in rainfed 
and irrigated conditions. In addition, based on the percentage 
of changes in the irrigated environment compared to rainfed 
(TCP%), grain yield and soluble protein increased under 
irrigated conditions and decreased with stress. But on the 
other hand, the activity of peroxidase, superoxide dismutase, 
catalase, proline content, ascorbic peroxidase and malon-
dialdehyde increased with stress, and the increase in the 
activity of these biochemical compounds aligns with enhanced 
stress resistance and reduced stress-induced damage. 
Therefore, the presence of a better antioxidant enzyme system, 
as evidenced by higher POD, SOD, CAT and APX activities in 
drought-tolerant wheat genotypes, could indicate that these 
genotypes are more efficient in removing superoxide anions 
produced in plants due to drought stress. Similarly, Saed-
Moucheshi et al (2019) reported significant differences among 
genotypes for all yield and biochemical traits in triticale under 
regular irrigation and drought stress conditions. Furthermore, 
they observed significant increases in proline, malon-
dialdehyde, protein content and antioxidant enzyme activities 
in response to drought stress, which aligns with the findings 
of this study. In a study by Pour-Aboughadareh et al (2022) 
evaluating biochemical traits in wild relatives of wheat under 
drought stress, ANOVA results revealed significant variations 
across growth conditions, except for dry matter in control 
and drought stress environments. Additionally, the activities 
of all antioxidant enzymes increased compared to the control 
conditions, which is consistent with current research. 
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Table 12. Markers association with drought tolerance indices of wheat genotypes. *, significant at 5% probability level; **, significant at 
1% probability level; †, a1, a2, a3, a4, and a5 are the average alleles 1, 2, 3, 4, and 5, respectively. STI, Stress Tolerance Index; MP, Mean 
productivity; GMP, Geometric Mean Productivity; HMP, Harmonic Mean Productivity; SSI, Stress Susceptibility Index; TOL, Tolerance; ATI, 
Abiotic Tolerance Index; SSPI, Stress Susceptibility Percentage Index; PEV, Press Evaluation; RDY, Relative Decrease in Yield. 

Indices Marker† Regression 
coefficient (B)

Standard error 
(SE)

t-value Significance 
level

R2 Adjusted R2

ATI Constant 21398.56 2357.34 9.08 ** 0.881 0.841

XGWM136(a3) 38568.94 6801.55 5.67 **

XGWM577(a2) 23254.62 3825.74 6.08 **

XGWM2(a2) -18557.49 3870.85 -4.79 **

XGWM410(a1) 16573.71 3837.98 4.32 **

XGWM265(a1) -17499.84 5480.78 -3.19 **

XGWM136(a4) -17941.44 5977.63 -3 **

SSPI Constant 17.01 2.07 8.23 ** 0.775 0.716

XGWM136(a3) 26.8 4.25 6.31 **

XGWM136(a4) -13.24 3.5 -3.79 **

XGWM265(a2) -4.67 2.1 -2.22 *

XGWM577(a2) 5.81 2 2.91 **

XGWM165(a2) -5.56 2.22 -2.5 *

TOL Constant 134.65 16.35 8.24 ** 0.775 0.716

XGWM136(a3) 212.14 33.63 6.31 **

XGWM136(a4) -104.84 27.68 -3.79 **

XGWM265(a2) -36.93 16.6 -2.23 *

XGWM577(a2) 46 15.81 2.91 **

XGWM165(a2) -43.99 17.59 -2.502 *

MP Constant 393.77 17.393 22.64 ** 0.619 0.565

XGWM124(a2) -87.581 20.85 -4.201 **

XGWM410(a1) 61.89 21.85 2.833 **

XGWM165(a1) -72.78 34.633 -2.101 *

GMP Constant 386.27 16.91 22.85 ** 0.619 0.565

XGWM124(a2) -84.36 20.27 -4.163 **

XGWM410(a1) 59.544 21.24 2.804 *

XGWM165(a1) -73.03 33.67 -2.17 *

HMP Constant 378.97 16.64 22.78 ** 0.613 0.558

XGWM124(a2) -81.242 19.94 -4.074 **

XGWM410(a1) 57.29 20.89 2.742 *

XGWM165(a1) -73.24 33.13 -2.211 *

SSI Constant 1.11 0.121 9.16 ** 0.575 0.514

XGWM136(a3) 1.36 0.262 5.2 **

XGWM136(a4) -0.824 0.231 -3.56 **

XGWM265(a2) -0.309 0.147 -2.1 *

PEV Constant 0.314 0.034 9.16 ** 0.575 0.514

XGWM136(a3) 0.386 0.074 5.2 **

XGWM136(a4) -0.233 0.065 -3.57 **

XGWM265(a2) -0.087 0.042 -2.1 *

STI Constant 0.968 0.081 11.89 ** 0.526 0.483

XGWM124(a2) -0.416 0.095 -4.36 **

XGWM410(a1) 0.294 0.1 2.93 **

RDY Constant -1416.28 127.5 -11.11 ** 0.526 0.483

XGWM124(a2) 650.93 149.42 4.36 **

XGWM410(a1) -460.43 157.09 -2.93 **
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In a study on 20 bread wheat cultivars under water stress 
and non-stress conditions, water stress caused a significant 
54.9% reduction in grain yield and reductions in all studied 
traits except grain protein content (Al-Naggar et al, 2020), 
contrasting with the present study regarding protein content. 
Similarly, Firouzian et al (2023) reported that stress reduced 
yield components, physiological traits, and ultimately 
decreased grain yield by about 25% in bread wheat, while, 
in the present study, drought stress reduced grain yield by 
28.3%. In a study investigating terminal heat stress effects 
on wheat cultivars, variance analysis of phenological 
traits, grain yield and biochemical traits showed significant 
variations in genotypes, environments, and genotype × 
environment interactions (for grain yield, SOD, POD, APX, 
CAT and proline) (Kumar et al, 2023a). In the present study, 
variance analysis also revealed significant variations for grain 
yield and all biochemical traits in the environment effect, 
for all traits except soluble protein in the genotype effect, 
and for all traits except grain yield and malon-dialdehyde 
in the interaction effects. Similarly, in a study by Mkhabela 
et al (2019) investigating drought-tolerant wheat genotypes 
under drought stress and non-stress conditions, the effects of 
genotype, stress condition, and genotype × stress condition 
interaction were significant for the tested traits, indicating 
differential genotypic responses to selection, in agreement 
with this study.

Estimating heritability helps plant breeders identify 
elite genotypes (Farshadfar, 2010). Likewise, genetic 
advancement reflects the mean genotypic value relative 
to the parental population and serves as an indicator of 
the genetic gain achieved through selection (Kumar et al, 
2023b). High broad-sense heritability suggests that the trait 
is minimally influenced by environmental factors. However, 
modifying such a trait may be less beneficial, as broad-
sense heritability encompasses the total genetic variance, 
including additive (fixable), dominance and epistasis (non-
fixable) variances. On the other hand, high genetic advance 
or genetic gain indicates that the trait is primarily governed 
by additive genes, making selection a practical approach 
for improvement. Conversely, low genetic advance or gain 
suggests that the trait is controlled by non-additive genes, 
in which case heterosis breeding would be a more effective 
strategy (Farshadfar, 2010; Kaur et al, 2023). Traits with 
heritability (h² > 60.0%) and genetic gain (GG > 20.0%) 
indicate that the observed variation is predominantly due to 
genetic factors, thereby making these traits reliable candidates 
for selection (Faysal et al, 2022; Kaur et al, 2023), which in 
the present study also included most biochemical traits with 
heritability above 90% and genetic gain above 30%. This 
indicates the high influence of genetic factors and aligns with 
the aforementioned findings. In summary, this study showed 
that broad-sense heritability and genetic gain for catalase, 
superoxide dismutase activity, proline content and ascorbic 
peroxidase activity were high under both irrigated and 
rainfed conditions, and were lowest for malon-dialdehyde. 
Therefore, it is recommended to use these traits as ideal 
criteria, along with yield, to select high-yielding genotypes in 
breeding programmes. In research on bread wheat genotypes, 
moderate heritability values and high genetic gain for grain 
yield were recorded, suggesting these traits are promising 
targets for improvement through favorable selection (Amare, 
2023). In the present study, moderate broad-sense heritability 
and genetic gain were obtained for grain yield. Similarly, 

in the study by Saed-Moucheshi et al (2019), grain yield 
showed heritability values of 32.14% and 29.62% under 
normal irrigation and drought stress conditions, respectively, 
indicating environmental influence. Additionally, SOD and 
MDH showed the highest heritability under both conditions, 
while in the present study, CAT, SOD, PC and APX showed 
the highest heritability, and MDA the lowest heritability in 
both environmental conditions. The heritability of grain yield 
was 27.8% and 60.4% in rainfed and irrigated conditions, 
respectively. In studies by Shah et al (2019) on bread wheat 
under rainfed conditions and Sallam et al (2024b) on bread 
wheat under heat stress, the traits grain protein content, 
proline and catalase, respectively, showed high heritability 
and genetic gain, consistent with the study. Additionally, 
various researchers have utilized broad-sense heritability (Li 
et al, 2023; Sowadan et al, 2024) and genetic gain (Yusuf et 
al, 2021; Dukamo et al, 2023) to examine genetic variability 
and identify suitable traits for breeding programmes, aligning 
with the study’s findings regarding the importance of these 
parameters.

These indices are used to calculate the level of drought 
tolerance in plants. Different indices are designed based on 
different traits that are related to grain yield. These indices 
are used in different agronomic, biochemical, molecular and 
even cytogenetic categories to select the best genotype. The 
correlation heatmaps were created to analyze the relationships 
between studied traits and drought tolerance indices in 
rainfed and irrigated conditions. Based on the nature of the 
indicators, it was observed that most of the studied traits 
showed a highly significant correlation with indices such as 
STI, MP, GMP, HMP and RDY. These indicators were identified 
as the most effective for selecting drought-tolerant and 
high-performing genotypes. Additionally, these indices had 
a strong influence on the first principal component, which 
was identified as the drought tolerance component. Similar 
to the present study, Reddy et al (2023), used correlation 
heatmaps to examine the relationship between phenotypic 
traits and drought tolerance indices such as STI, MP, and 
GMP. Also, in the study by Giovenali et al (2023), Pearson 
correlation coefficients were analyzed using heatmaps to 
investigate the relationships between yield-related traits, 
physiological parameters and biochemical parameters, and 
significant positive and negative correlations were obtained. 
In a related study, correlation heatmaps were employed to 
explore the relationships between phenological, physiological 
and biochemical variables in optimal conditions, heat stress 
conditions, prolonged heat stress conditions, and a combined 
environment. In optimal conditions, the correlation between 
seed yield and the APX and CAT traits was positive but not 
statistically significant. In heat stress conditions, a positive and 
significant correlation was observed between seed yield and 
the traits proline and SOD. When heat stress was prolonged, 
the correlation between seed yield and CAT became negative 
and was not significant. However, in high-temperature 
conditions, seed yield demonstrated a positive and significant 
correlation with proline, SOD and POD, while its relationship 
with APX remained positive but non-significant (Kumar et 
al, 2023a). In the present study, CAT and APX did not show 
statistically significant correlations with any of the drought 
tolerance indices. Under irrigation conditions, there was a 
significant negative correlation between PC and the SSI and 
PEV indices. There was also a significant positive correlation 
between POD and the STI, MP, GMP and HMP indices, and a 
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significant negative correlation with the RDY index. Under 
rainfed conditions, the correlation of SOD with the STI, MP, 
GMP and HMP indices was positive and significant, and with 
the RDY index was negative and significant. 

Principal component analysis (PCA), a multivariate 
statistical method, serves as an efficient approach to data 
reduction by identifying strong correlations among variables 
to derive clear conclusions. In this study, PCA and biplot 
visualization were applied to analyze traits across 25 bread 
wheat genotypes under rainfed conditions. The first two 
principal components (PC1 and PC2) accounted for 64.08% 
of the total variation in drought tolerance indices and 
studied traits. Biplot visualization revealed considerable 
genetic diversity among genotypes in response to drought 
stress. These findings align with existing literature: Pour-
Aboughadareh et al (2022) reported PC1 and PC2 explaining 
64.52% of biochemical variation in wild wheat species under 
drought (PC1 = 47.86%; PC2 = 16.66%). Sallam et al, 
(2024a) identified four principal components (eigenvalues 
>1) capturing 89.79% of variance across 30 agro-physio-
biochemical traits. PC1 correlated with 24 traits (e.g. grain 
yield, catalase, peroxidase, superoxide dismutase and 
proline), PC2 with five traits (e.g. soluble protein), PC3 
showed no significant associations, and PC4 linked to glycine 
betaine. Similarly, in the present study, the first four principal 
components explained 81.05% of total variance: PC1 (grain 
yield and drought-tolerance indices), PC2 (drought-stress 
indices), PC3 (soluble protein and proline), and PC4 (catalase 
activity and malon-dialdehyde).

Of the 20 SSR markers tested, 16 showed significant 
polymorphism. Genetic diversity assessment of bread 
wheat genotypes utilizing SSR markers revealed XCFD168, 
XGWM350 and XGWM136 as fully polymorphic (100%). 
These markers demonstrated the highest allele counts 
and superior performance across key genetic indices: 
polymorphism information content (PIC), marker index (MI), 
effective multiplex ratio (EMR), and resolving power (RP) 
(Table 8). Consequently, these represent optimal candidates 
for advanced wheat genetic analyses. Notably, the significant 
discriminatory power achieved with limited primer sets 
confirms that highly polymorphic SSRs efficiently differentiate 
both individual accessions and population subgroups. These 
findings corroborate prior research identifying the same three 
markers as exceptionally informative. For instance, the marker 
XGWM136 was similarly highlighted by Budak et al (2013) and 
Kaur et al (2016), while Khan et al (2021) identified XGWM136 
and XCFD168, and Haque et al (2020) emphasized XGWM350, 
collectively supporting their utility as reported in this study. In 
genomic diversity research on bread wheat using SSR markers, 
markers XGWM136, XCFD168, XGWM2, XGWM155, XCFD5, 
XGWM165, XGWM33 and XGWM129 were used (Ahmed et 
al, 2020), consistent with the marker selection in this study. 
Additionally, research on bread wheat genetic diversity 
revealed high PIC and marker index, showing greater diversity 
in the A and B genomes compared to the D genome (Feltaous, 
2019). In the present study, more diversity was observed in the 
B genome, followed by D and A. In another study, 17 bread 
wheat genotypes evaluated with 16 SSR markers showed only 
11 markers with high polymorphism and reproducibility (Kara 
et al, 2020). Similarly, a study assessing the genetic diversity 
and population structure of wheat genotypes employed ten SSR 
markers to characterize diversity across 22 genotypes (Hassan 
et al, 2025). Here, 25 bread wheat genotypes examined with 

20 SSR markers revealed 16 with significant polymorphism. 
Regarding PIC values and marker utility, these findings 
align with prior reports. For example: in SSR evaluation of 
bread wheat, the PIC ranged from 0.276 to 0.541 (average: 
0.384), using primers XGWM192 and XGWM642 (Islam et 
al, 2012). Three subsequent studies (El-Rawy and Hassan, 
2021; Ahmed et al, 2024; Bavandpouri et al, 2025) reported 
a PIC range of 0.20–0.50 (average: 0.33). El-Rawy and 
Hassan (2021) utilized primers XGWM165, XGWM155, and 
XGWM577, with XGWM577 showing superior performance. 
Bavandpouri et al (2025) introduced three markers – 
namely XCFD168, XGWM350, and XGWM136 – as the most 
significant; while Ahmed et al (2024) highlighted XGWM642. 
In a separate analysis of ten bread wheat genotypes using ten 
SSR markers, Kumari et al (2025) detected 64 polymorphic 
bands, where alleles per locus ranged from 1 to 4 (highest 
for XGWM2 and XGWM265). In the present study, 33 out of 
35 bands were polymorphic. The highest number of alleles 
(five) was observed for primer XGWM136, while the lowest 
number (two alleles) was recorded for primers XGWM155, 
XGWM410 and XGWM234. Collectively, these findings 
confirm SSR markers as reliable indirect selection tools for 
more efficient cultivar improvement.

Genetic structure within populations is commonly 
analyzed through variance analysis, where the variance 
between and within groups is determined based on the 
genetic distances among individuals. AMOVA is particularly 
effective in partitioning variance in wild species and among 
groups of cultivars originating from different regions 
(Farshadfar, 2023). The results of AMOVA revealed that 
the observed grouping of bread wheat genotypes could, to 
some extent, be explained by the diversity in SSR marker 
bands. The φPT statistic is employed as a criterion to test the 
assumption of population differentiation at the relevant level. 
In this experiment, AMOVA indicated that the φPT statistic 
was low due to the high genetic diversity observed within 
the populations. Similar findings were reported in a study 
investigating the genetic diversity of bread wheat using ISSR 
and SSR markers, where AMOVA for both types of markers 
revealed that genetic variation within species surpassed 
the genetic diversity among them (Jabari et al, 2023). 
Additionally, in another study, AMOVA results demonstrated 
that 19% of the total genetic variation occurred among 
subpopulations, while the remaining 81% was attributed to 
individual differences within each subpopulation (Sowadan 
et al, 2024).

In drought tolerance research, pinpointing QTLs linked 
to drought-responsive traits is pivotal for deciphering their 
genetic mechanisms (Sallam et al, 2019). To identify relevant 
SSR markers, regression analysis was conducted between 
grain yield and biochemical traits under rainfed and irrigated 
conditions, with ten drought tolerance indices as dependent 
variables and marker gene locations as independent variables. 
Results revealed significant trait–primer relationships. A 
key advantage of this multivariate regression approach 
is its efficiency in QTLs detection, reducing time and cost 
while eliminating the need for mapping populations (Ruan 
et al, 2009). This study specifically aimed to identify 
alleles correlated with grain yield and biochemical traits as 
informative markers. Outcomes supporting this objective are 
detailed in Table 10, Table 11 and Table 12. Critical associations 
include: XCFD168 marker showing strong correlation with 
catalase activity under rainfed conditions; XGWM350 linked 
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to ascorbic peroxidase activity (rainfed); and XGWM136 
associated with yield under irrigated conditions and ATI, 
TOL, SSPI, SSI and PEV indices. Notably, XGWM410(a1) 
correlated with yield in both environments, catalase activity 
under irrigation, and multiple indices; XGWM2(a2) tied to 
irrigated yield, rainfed ascorbic peroxidase activity, and ATI; 
while XGWM124(a2) demonstrated associations with yield, 
rainfed superoxide dismutase activity, and several indices. 
In a study investigating associations between biochemical 
traits and stress tolerance indices in wheat under drought 
using 24 SSR markers, two markers were linked to APX and 
three to CAT in control conditions, whereas under drought 
stress, two markers associated with APX and one with POD, 
alongside two markers significantly correlated with the STI 
index. These results suggest genomic regions governing 
growth and developmental characteristics across conditions 
(Pour-Aboughadareh et al, 2022). Comparatively, in the 
current study, biochemical trait analysis revealed one marker 
correlated with SOD and one with CAT under irrigation, 
while under rainfed conditions, one marker associated with 
SOD, one with CAT, three with APX and one with MDA. 
Regarding STI index, consistent with Pour-Aboughadareh 
et al (2022), two markers showed significant correlations. 
In a linkage mapping study for photosynthesis and yield 
traits under moisture stress and drought indices (SSI and 
STI) in winter bread wheat, 28 linkages were identified 
for drought tolerance indices, with one marker consistently 
associated across two seasons (Saeed et al, 2017). Here, 35 
linkages emerged for drought indices, four of which were 
associated with both SSI and STI. El-Rawy and Hassan 
(2021) reported SSR markers XGWM260 and XGWM573 
as specific to drought-tolerant bread wheat genotypes (low 
DSI values), suggesting marker-trait associations for drought 
tolerance. In contrast, our study identified XGWM136 and 
XGWM265 as significantly associated with SSI. Negisho et 
al (2022) detected 184 marker-trait associations (MTAs) for 
drought indices in Ethiopian durum wheat, with six MTAs (on 
chromosomes 2B, 3B, 4A, 5B and 6B) positively affecting GY-
GMP. Notably, 41 MTAs (22.28%) associated with ≥ 2 indices, 
of which 16 (39.02%) linked to GMP and STI. Similarly, we 
identified an MTA positively affecting GMP on chromosome 
2B, along with 35 gene loci for drought indices –10 (28.57%) 
common to all indices, with 30% of stable MTAs associated 
with GMP and STI. Across these studies, a positive regression 
coefficient indicates that selecting genotypes harbouring such 
alleles may enhance yield and drought tolerance.

The association between individual markers and multiple 
traits may arise from pleiotropic effects or overlapping 
QTLs influencing diverse characteristics. Primers such as 
XGWM136, XGWM234 and XCFD168 – previously used to 
investigate grain yield and agronomic traits relationships 
via SSR markers with potential for heat-tolerance breeding 
(Khan et al, 2021) – were similarly employed in this study, 
with XCFD168 and XGWM136 emerging as superior markers. 
Consistent with our findings, numerous studies report 
significant yield-marker associations: Maccaferri et al (2011) 
established XGWM410–yield relationships; Amalova et al 
(2024) documented correlations between grain yield and 
XGWM124. Bavandpouri et al (2025) reported significant 
relationships between XGWM265 and grain yield under 
irrigated conditions, and between XGWM410, XGWM577, 
and XGWM124 markers and grain yield under both rainfed 
and irrigated conditions, while Eldemery et al (2022) and 

Firouzian et al (2023) observed XGWM577–yield linkages 
under heat stress. Concurrently, XGWM165 – also utilized 
here – showed notable associations with SSPI, TOL, MP, GMP, 
and HMP indices, aligning with our results and collectively 
reinforcing these outcomes. Ultimately, this research 
confirms that molecular markers exhibiting strong regression 
coefficients for biochemical traits and drought tolerance 
indicators offer breeders actionable insights. Such markers 
enable selection of environmentally stable QTLs linked to 
yield and drought tolerance, accelerating the development 
of superior genotypes. Moreover, the identified MTAs hold 
direct utility in wheat breeding programmes targeting 
drought stress, particularly for marker-assisted selection and 
gene pyramiding strategies.

Conclusion

Molecular markers linked to biochemical traits can 
accelerate the identification of drought-tolerant germplasm, 
enhancing breeding efficiency. Significant genotypic variance 
confirmed substantial genetic diversity and differential 
drought stress responses. Key biochemical traits – catalase 
(CAT), superoxide dismutase (SOD) activity, proline content 
(PC), and ascorbate peroxidase (APX) activity – exhibited 
high heritability (> 90%) and genetic advance (> 30%) 
under both irrigated and rainfed conditions, unlike malon-
dialdehyde (MDA). Thus, these traits are recommended 
for selecting high-yielding genotypes. Principal component 
analysis (PCA, 64.08% variance explained) and correlation 
identified stress tolerance index (STI), mean productivity 
(MP), geometric mean productivity (GMP), harmonic mean 
productivity (HMP), and relative decrease in yield (RDY) 
as the most effective drought tolerance indices, strongly 
correlated with grain yield and biochemical traits. Genotypes 
6, 10, 15, 18, 13, and Pishtaz demonstrated superior drought 
tolerance, high yield potential, and optimal biochemical 
performance (SOD, APX, PC, MDA, CAT) under stress. Among 
20 SSR markers, 16 showed significant polymorphism. 
Markers XCFD168 (rainfed-CAT), XGWM350 (rainfed-
APX), XGWM124(a2) (yield, rainfed-SOD, multiple indices), 
XGWM136 (irrigated yield, ATI, TOL, SSPI, SSI, PEV), 
XGWM410(a1) (yield in both environments, irrigated-CAT, 
multiple indices), and XGWM2(a2) (irrigated yield, rainfed-
APX, ATI) exhibited significant trait associations. These 
markers are strongly recommended for marker-assisted 
breeding to improve yield and drought tolerance.
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