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Abstract: Wheat is one of the oldest and most important staple crops worldwide, facing various biotic and abiotic stresses
that affect its productivity. This study examines microsatellite markers related to grain yield, biochemical traits and drought
tolerance indices in 25 wheat genotypes. The experiment was set up based on the randomized complete block design with
three replications under rainfed and irrigated conditions. Combined variance analysis revealed significant differences among
genotypes. Principal component analysis identified drought-tolerant genotypes (6, 10, 15, 18, 13, Pishtaz) linked to superior
yield, stress indices, and antioxidant activity under rainfed conditions. Polymorphic SSR markers revealed key associations:
XCFD168 with catalase, XGWM350 with ascorbic peroxidase (both under rainfed conditions), and XGWM136 with yield
in irrigated conditions and multiple stress indices. Marker XGWM410(al) was associated with yield in both environments,
catalase in irrigated conditions, and multiple indices. Marker XGWMZ2 (a2) was linked to yield in irrigated conditions, ascorbic
peroxidase in rainfed conditions, and abiotic tolerance index, while XGWM124(a2) was associated with yield, superoxide
dismutase in rainfed conditions, and multiple indices. The study identifies these genotypes as top candidates for drought
tolerance due to their high yield and optimal biochemical responses under stress. Furthermore, key molecular markers —
XCFD168, XGWM350, XGWM136, XGWM124(a2), XGWM410(al), and XGWM2(a2) - associated with biochemical and yield
traits are prioritized for marker-assisted selection to enhance drought tolerance and yield stability in breeding programmes.
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Introduction

Wheat (Triticum aestivum L.) contributes to approximately
one-third of the global food supply. The Food and Agriculture
Organization of the UN (FAO) estimates that by 2050,
an annual production of around 840 million tonnes of
wheat will be required (Ma et al, 2022). However, wheat
production is increasingly affected by various biotic and
abiotic stresses that reduce crop yield and productivity.
Among these, drought stress stands out as a major abiotic
challenge, posing a significant threat to global food security,
especially in the context of climate change (Sunil kumar et
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al, 2023). As a result, there is a critical need to identify and
cultivate drought-tolerant, high-yielding genotypes to ensure
sustainable food production and meet the demands of a
growing global population (Galal et al, 2023). Drought stress
in wheat triggers morphological, physiological, biochemical
and molecular changes (Gupta et al, 2024; Rashid et al,
2022). Utilizing selection factor indicators can significantly
improve the identification of genotypes that perform
well in both optimal and stress conditions. A promising
strategy to enhance wheat drought tolerance is to improve
its antioxidant defense mechanisms (Gupta et al, 2024).
Antioxidant enzymes are critical in protecting plants from
oxidative damage caused by various environmental stresses.

Molecular markers associated with  biochemical
parameters can significantly expedite the identification of
tolerant genetic materials in breeding programmes. The
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simple sequence repeat (SSR) marker system is highly
effective for detecting significant marker—trait associations
in wheat germplasm (Pour-Aboughadareh et al, 2022). SSRs,
also known as microsatellites, are short, tandemly repeated
DNA sequences (typically 1-6 nucleotides in length) that
are distributed genome-wide, exhibiting high polymorphism
due to replication slippage in non-coding regions (Ellegren,
2004). Because of their multi-allelic nature, co-dominant
inheritance, uniform genomic distribution and simple
detection methodology, these markers are widely favoured
for assessing genetic variation and analyzing population
structures (Jabari et al, 2023; Ahmed et al, 2024).

Exploring the genetic foundations of quantitative traits
in crops and understanding the relationship between DNA
polymorphisms and phenotypic variations are essential for
plant breeding programmes. Identifying quantitative trait loci
(QTLs) linked to drought tolerance through marker-assisted
selection is particularly important for crop improvement and
represents a valuable strategy for boosting wheat yield (Zhao
et al, 2023). Multivariate regression analysis (MRA) offers a
fast and effective approach for establishing the association
between traits and markers. A significant benefit of MRA is its
capacity to pinpoint loci associated with quantitative traits.
Furthermore, this method is both time-efficient and cost-
effective (Vaillancourt et al, 2008) and does not require the
creation of specialized populations for mapping.

The genetic diversity of 18 wheat genotypes was evaluated
for drought tolerance using 25 microsatellite markers
alongside morpho-physiological traits. Findings revealed that
integrating these two approaches enhanced the efficiency of
the screening process and provided more reliable outcomes
for improving drought tolerance in wheat (Ahmed et dl,
2023). A study investigating morphological, biochemical
and genetic diversity for diagnosing salt tolerance in 18
wheat genotypes using SSR markers highlighted significant
findings. The stepwise regression analysis emphasized the
importance of root dry matter, relative turgidity and their
respective contributions to shoot dry matter. Out of 23 SSR
primers analyzed, 17 exhibited polymorphisms (Al-Ashkar et
al, 2020). An association analysis performed on wild relatives
of wheat in drought stress conditions, using 24 SSR markers,
identified eight and nine significant marker-trait associations
(MTASs) in control and drought stress conditions, respectively.
Notably, two MTAs were consistently observed in both growth
conditions (Pour-Aboughadareh et al, 2022). A study on
Iranian wheat varieties and landraces employed agronomic
traits and drought tolerance indices to identify significant
SNP loci associated with drought-tolerance characteristics.
The findings revealed that association mapping based on
multiple drought tolerance indices can be highly effective
in identifying critical markers for drought tolerance and
uncovering linked gene networks (Rabieyan et al, 2023).
Additionally, a research evaluation combining genetic and
phenotypic analyses was conducted to identify drought-
tolerant bread wheat genotypes using multivariate analysis
techniques, including stepwise multiple linear regression.
The results demonstrated that SSR markers were associated
with nine agro-physio-biochemical traits, highlighting their
utility as a valuable tool in the selection process for drought
tolerance (Sallam et al, 2024a).

Despite these advances, very few studies have explored
the association between molecular markers and biochemical
traits whose activity increases in drought stress. Biochemical

traits, like the accumulation of proline or antioxidants, are
the measurable physiological responses of a plant to stress.
Molecular markers are DNA sequences that can pinpoint
the specific genes or genomic regions controlling these
biochemical pathways (Oguz et al, 2022). Therefore, this
research aimed to: (1) characterize bread wheat genotypes in
terms of biochemical traits, grain yield, and drought tolerance
indices, (2) analyze the impact of drought stress on wheat
traits to enhance yield and drought tolerance, (3) evaluate
the genetic diversity of wheat genotypes for drought tolerance
using studied traits and SSR markers, and (4) investigate the
association between the studied traits and indices with SSR
markers and identify informative markers associated with
grain yield, biochemical traits, and drought tolerance indices
in wheat in both rainfed and irrigated conditions.

Materials and methods

Field experiment

Twenty-five bread wheat genotypes were evaluated,
including two cultivars (Pishtaz and Pishgam) as controls,
and 23 accessions of bread wheat (Table 1). The genotypes
were sourced from the genebank of Karaj Seedling and
Seed Breeding Research Institute, Iran. Field experiments
were conducted during the 2018-2019 growing season
using a randomized complete block design with three
replications under rainfed and irrigated conditions in a
cold Mediterranean climate (34°21'N, 47°9'E; altitude:
1,319m; mean annual rainfall: 430-460mm) in Iran. Each
experimental plot consisted of five rows, each with a length
of 2m, row spacing of 23cm, and a planting density of 400
seeds per square metre. The planting date (14 November
2018) coincided with the first irrigation, but no irrigation
was provided to the rainfed plots during the growth
period. The total rainfall during the experimental year was
401.51mm. For the irrigated treatment, three additional
irrigations were applied: The first on 15 May, at the heading
stage (50% spike emergence). The second in late May, after
full spike emergence. The third on 14 June, during the seed
milking stage. No chemical fertilizers were applied during the
experiment, and weeding was performed manually.

Molecular experiment

For molecular evaluation of the studied genotypes, 20
pairs of SSR markers were utilized. DNA was extracted from
two- to three-week-old seedlings grown from seeds using the
cetyltrimethylammonium bromide (CTAB) method, based on the
modified protocol of Doyle and Doyle (1987), in bulk. Genomic
DNA was extracted from 50 mg of cryogenically homogenized
tissue. Samples were suspended in 800ul extraction buffer
(100ml containing: 4g CTAB, 16.36g NaCl, 3.15g Tris-HCl, 1.48g
EDTA, and 400ul B-mercaptoethanol; pH 8.0) and incubated at
65°C for 30 min. After adding 800yl chloroform-isoamyl alcohol
(24:1), samples were vortexed for 60 min, centrifuged (13,000
X g, 15 min), and the aqueous phase was transferred to fresh
tubes. This phase was mixed with 500ul cold isopropanol and
held at -20°C for 2 hours. Subsequent centrifugation (13,000
X g, 15 min) yielded DNA pellets, which were washed twice
with 500ul cold 80% ethanol (brief centrifugation, supernatant
removal). Pellets were air-dried and resuspended in 100ul
nuclease-free H,O. Extracted genomic DNA was evaluated by
0.8% agarose gel electrophoresis.
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Table 1. List of bread wheat planting materials used for the study.
IR, Iran; US, United States of America.

Genotype Genotype number Origin
number and name

1 WC-4924 Kalat, IR

2 WC-4582 Kermanshah, IR
3 WC-4592 Kermanshah, IR
4 WC-47341 Montana, US

5 WC-4965 Kashan, IR

6 WC-4840 Sarakhs, IR

7 WC-4958 Badranloo, IR

8 WC-47399 Bulgaria

9 WC-4600 Kermanshah, IR
10 WC-4987 Unknown, IR
11 WC-47615 Mexico

12 WC-4612 Kordestan Babrar, IR
13 WC-5001 Unknown, IR
14 WC-4994 Unknown, IR
15 WC-47638 Peru

16 WC-47583 Canada

17 WC-47522 Mexico

18 WC-47569 Minnesota, US
19 Pishtaz Pishtaz, IR

20 Pishgam Pishgam, IR

21 WC-47640 Minnesota, US
22 WC-47467 Mexico

23 WC-4553 Kerend, IR

24 WC-4583 Kermanshah, IR
25 WC-4554 Kerend, IR

Polymerase Chain Reaction (PCR) was conducted in three
temperature-dependent steps. DNA samples diluted to 10ng/
ul were amplified using 20 primer pairs (primer sequences
are provided in Table 2). PCR was performed in 20ul reaction
volumes using a Bio-Rad thermocycler.

The PCR products were electrophoresed on a 3% agarose
gel in 1x TBE buffer, stained with 10ul safe stain. DNA bands
were visualized using a Quantum ST4 Gel Documentation
system. As not all samples were loaded on the same gel, a
100-1500bp DNA size marker (producing 11 bands) was
included. Band presence was scored as ‘1’ and absence as ‘0’,
compiling the data into a matrix. Alleles detected in genotypes
were designated a, b, ¢, and d for each marker. This matrix
served as the foundation for subsequent statistical analyses
based on electrophoretic band pattern.

Biochemical enzyme assays

Measurement methods of the biochemical traits were
carried out as follows. Extraction buffer preparation: A
200ml Tris-HCl extraction buffer (pH 8.0) was prepared by
dissolving 2.428g of Tris and 0.2g of PVP in 40ml of distilled
water. The solution’s pH was then adjusted to 8.0 using HCI,
and the final volume was brought to 200ml with distilled
water. The prepared buffer was stored at 4°C, protected from
light with aluminium foil.

Enzyme extraction: Flag leaf samples were ground into a
fine powder in liquid nitrogen. Subsequently, 250mg of the
homogenized powder was combined with 1ml of the pre-
cooled extraction buffer in a 2ml microtube. The mixture was
vortexed for 30 seconds and then incubated at 4°C for 12
hours. During this incubation period, the samples underwent
two additional 30-second vortexing steps at 2-hour intervals.
Following incubation, the homogenate was centrifuged
at 13,000 x g for 15 minutes at 4°C. The resulting clear
supernatant was carefully collected for the subsequent
analysis of soluble protein content and antioxidant enzyme
activities (Ramachandra Reddy et al, 2004). Meanwhile,
the BioTek PowerWave XS2 microplate reader was used to
measure biochemical traits.

Peroxidase Activity (POD) was assayed according to
the method of Chance and Maehly (1995) with slight
modifications by combining 6.6ul of diluted enzyme extract
(1:4) with 200ul of substrate solution [408.71ul guaiacol
+ 78.3ul 0.9 M H,O, in 50mM potassium phosphate buffer
(pH 7.0)]. After a 15-minute incubation, absorbance was
measured at 470nm every 30s.

Superoxide Dismutase Activity (SOD) was assayed
following the method of Beauchamp and Fridovich (1971).
The assay solution consisted of 50 mM potassium phosphate
buffer (pH 7.8), 12.26mg nitroblue tetrazolium (NBT),
387.92mg L-methionine, 1mM EDTA, and 0.04mM riboflavin
(stored in light-protected containers). For the assay, 196,
197, 198, and 199ul of extraction buffer were mixed with 4,
3, 2, and 1ul of diluted enzymatic extract (1:4), respectively,
to achieve 200wl reaction mixtures. These mixtures were
transferred to a 96-well microplate, followed by addition of
10wl riboflavin solution under dark conditions. After 30 min
illumination in a light chamber, absorbance was measured at
560nm.

Catalase Activity (CAT) was assayed according to the
method of Sinha (1972) with slight modifications. The assay
was performed by combining 1.5ul of diluted enzymatic
extract (1:4) with 150ul of 50 mM phosphate buffer (pH
7.0). The reaction was initiated by adding 75ul of 0.32
mM hydrogen peroxide solution. At timed intervals (2, 4, 6
and 8 min post-initiation), 62ul of dichromate reagent was
rapidly added to each tube with immediate vortexing. Tubes
were transferred to a preheated 95°C water bath for 10 min.
After chromogenic development (green-to-yellow gradient),
samples were centrifuged at (10,000g, 5 min), and the
supernatant absorbance was measured at 570 nm.

Ascorbic Peroxidase Activity (APX) was assayed according
to the method of Nakano and Asada (1981). The reaction
was initiated by adding 50ul of the enzymatic extract to 1ml
of an assay solution containing 50 mM potassium phosphate
buffer (pH 7.0), 0.1 mM EDTA, 0.5 mM ascorbic acid (ASA),
and 0.15 mM hydrogen peroxide (H,0,). Absorbance at 290
nm was recorded every 10 s for 1 min.

Soluble Protein Concentration (PROTEIN) was determined
using the method of Bradford (1976). For the assay, 1ul of the
extracted sample was mixed with 200ul of freshly prepared
Coomassie Brilliant Blue G-250 dye reagent. After 15 min
incubation, absorbance at 595nm was measured, with dye
reagent as the blank. Protein concentration was calculated
from a bovine serum albumin (BSA) standard curve (O-
1,500ug/ml).
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Table 2. SSR primers used to assess the genetic diversity of bread wheat genotypes.

No. Name (5'-3") Sequence T™ GC% Band size References

1 XGWM350-7D-F 5 ACCTCATCCACATGTTCTACG 3' 57  47.6 150bp Haque et al (2020);
XGWM350-7D-R  5' GCATGGATAGGACGCCC 3 64.7 Bavandpouri et al (2025)

2 XGWM334-6AF 5 AATTTCAAAAAGGAGAGAGA 3 50 30 100bp Rosewarne et al (2013);
XGWM334-6A-R  5' AACATGTGTTTTTAGCTATC 3' 30 Halder et al (2023)

3 XGWM155-3A-F 5 CAATCATTTCCCCCTCCC 3 58 55.6 100bp Ahmed et al (2020);
XGWM155-3A-R  5' AATCATTGGAAATCCATATGCC 3' 36.4 El-Rawy and Hassan (2021)

4 XGWM577-7B-F 5 ATGGCATAATTTGGTGAAATTG 3 56 31.8 150bp El-Rawy and Hassan (2021);

El-demery et al (2022);

XGWM577-7B-R 5 TGTTTCAAGCCCAACTTCTATT 3' 36.4 Firouzian et al (3023)

5 XGWM70-6B-F 5 AGTGGCTGGGAGAGTGTCAT3'  52.5 55 200bp Batool et al (2018);
XGWM70-6B-R 5 GCCCATTACCGAGGACAC 3 61.6 llyas et al (2020)

6 XGWM642-1D-F 5 ACGGCGAGAAGGTGCTC 3' 58 45 180-200bp  Islam et al (2012);
XGWM642-1D-R  5' CATGAAAGGCAAGTTCGTCA 3 64.7 Ahmed et al (2024)

7 XGWM136-1AF 5 GACAGCACCTTGCCCTTTG 3' 52 57.9 250bp Budak et al (2013); Kaur et

al (2016); Khan et al (2021);

XGWM136-1A-R 5 CATCGGCAACATGCTCAT 3' 52.6 Bavandpouri et al (2025)

8 XGWM124-1B-F 5 GCCATGGCTATCACCCAG 3' 575 61.1 200bp Amalova et al (2024);
XGWM124-1B-R 5 ACTGTTCGGTGCAATTTGAG 3' 45 Bavandpouri et al (2025)

9 XGWM265-2A-F 5 TGTTGCGGATGGTCACTIATT 3 585 45 150bp Choudhary et al (2016);
XGWM265-2A-R  5' GAGTACACATTTGGCCTCTGC 3' 52.4 Kumari et al (2025)

10 XGWM410-2B-F 5 GCTTGAGACCGGCACAGT 3 51 61.6 250bp Maccaferri et al (2011);
XGWM410-2B-R 5 CGAGACCTTGAGGGTCTAGA 3' 55 Naroui Rad et al (2012)

11 XGWM165-4B-F 5 TGCAGTGGTCAGATGTTTCC3'  50.6 50 200bp Ahmed et al (2020);
XGWM165-4B-R  5' CTTTTCTTTCAGATTGCGCC 3 45 El-Rawy and Hassan (2021)

12 XGWM4-4AF 5 GCTGATGCATATAATGCTGT 3 525 40 250bp Mallick et al (2022a)
XGWM4-4A-R 5 CACTGTCTGTATCACTCTGCT 3' 47.6

13 XGWM192-5D-F 5 GGTTTTCTTTCAGATTGCGC3'  50.7 45 100bp Islam et al (2012);
XGWM192-5D-R  5' CGTTGTCTAATCTTGCCTTGC 3' 47.6 Heidari et al (2024)

14 XGWM233-7A-F 5 TCAAAACATAAATGTTCATTGGA 3 46.7  26.1 100bp Mallick et al (2022a)
XGWM233-7A-R 5 TCAACCGTGTGTAATTTTGTCC 3 40.9

15 XGWM2-3D-F 5 CTGCAAGCCTGTGATCAACT 3'  49.4 50 250bp Ahmed et al (2020);
XGWM2-3D-R  5' CATTCTCAAATGATCGAACA 3' 35 Kumari et al (2025)

16 XCFD5-5B-F 5' TGCCCTGTCCACAGTGAAG 3' 595  57.9 200bp Ahmed et al (2020);
XCFDS5-5B-R 5' TTGCCAGTTCCAAGGAGAAT 3' 45 Mallick et al (20222)

17 XGWM129-5A-F 5 TCAGTGGGCAAGCTACACAG 3 50.6 55 250bp Ahmed et al (2020);
XGWM129-5A-R  5' AAMACTTAGTAGCCGCGT 3' 44.4 Mallick et al (2022a)

18 XCFD168-2D-F 5 CTTCGCAAATCGAGGATGAT 3 56 45 250bp Khan et al (2021);
XCFD168-2D-R 5 TTCACGCCCAGTATTAAGGC 3' 50 Bavandpouri et al (2025)

19 XGWM234-5B-F 5 GAGTCCTGATGTGAAGCTGTTG 3 54 50 220-230bp  Khan et al (2021);
XGWM234-5B-R  5' CTCATTGGGGTGTGTACGTG 3' 55 Mallick et al (2022b)

20 XGWM33-1AF 5 GGAGTCACACTTGTTTGTGCA 3 59 47.6 100bp Ahmed et al (2020);

XGWM33-1A-R  5' CACTGCACACCTAACTACCTGC 3' 455 Mallick et al (20222)
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Malon-Dialdehyde (MDA) was determined according to the
method of Heath and Packer (1968). Briefly, 0.25g of wheat leaves
were homogenized in 500ul ice-cold 1.0% (w/v) trichloroacetic
acid (TCA) using a porcelain mortar. The homogenate was
centrifuged at 10,000 X g for 5 min at 4°C. Subsequently, 250ul
of the supernatant was reacted with 1mL of thiobarbituric acid
(TBA) reagent [0.5% (w/v) TBA in 20% (w/v) TCA]. The
mixture was incubated at 95°C for 30 min in a water bath, then
immediately cooled on ice and centrifuged again (10,000 X
g, 10 min, 4°C). A 200ul aliquot of the resulting chromogenic
supernatant was transferred to a 96-wall microplate. Absorbance
was measured at 532 and 600nm.

Proline Concentration (PC) was determined according
to the method of Bates et al (1973). Briefly, 0.05g of fresh
leaf tissue was homogenized in 1mL of ice-cold 3% (w/v)
sulfosalicylic acid using a pre-chilled mortar. The homogenate
was centrifuged at 4,000 X g for 15 min (4°C). A 10ul aliquot
of the resulting supernatant was then reacted with 200ul of
acid-ninhydrin reagent [1.25 g ninhydrin in 30ml glacial acetic
acid + 20ml 6 M phosphoric acid] and 200ul of glacial acetic
acid. Tubes were incubated at 95°C for 60 min, immediately
cooled on ice for 5 min, and then mixed with 400ul toluene
via 30-second vortexing. After a 20-minute phase separation
at 25°C, the upper toluene layer was transferred to a 96-
well microplate. Absorbance was measured at 520nm with
pathlength correction. Proline concentration was determined
from a standard curve (0-20ug/ml).

Statistical analysis

Combined variance analysisbased on the data obtained from
the evaluation of 25 genotypes, including two cultivars and
23 accessions, was performed to determine the contribution
of the main effects of genotype, irrigated conditions, and
their interaction using SAS 9.1.3 software. A comparison
of mean genotypes by the Least Significant Difference
(LSD) test was performed. A bar graph related to the mean
comparison was drawn in Excel. PCA was calculated based
on the means of traits and genotypes. Principal components
analysis was carried out using the Minitab16 software, and
correlations between the studied traits and indicators were
analyzed using the “corrplot” package in R-Studio version
4.5 (R Core Team, 2025). To analyze the differences among
the studied genotypes using SSR molecular markers, analysis
of molecular variance (AMOVA) was performed by GenAlex
software version 6.502. The association between SSR markers,
field-measured traits, and biochemical traits was analyzed
using stepwise multiple regression in SPSS 26 software. Each
quantitative trait was treated as a dependent variable, while
the SSR markers served as independent variables. The studied
traits and indices were measured in the field and molecular
experiment section, as shown in Table 3.

Results
Analysis of combined variance and mean
compression

The combined analysis of variance for grain yield and
biochemical characteristics is presented in Table 4. Significant

differences were observed across various irrigated conditions
for all characteristics. Genotypes showed significant variation
for all traits except soluble protein. Furthermore, the
genotype-by-irrigated interaction effect was significant for
most biochemical traits, except for grain yield and malon-
dialdehyde.

The mean comparison (mean of three replications)
of genotypes based on the studied traits in rainfed and
irrigated conditions, presented in the form of a bar graph,
is as follows. Genotype 10 showed the highest grain yield
under rainfed and irrigated conditions (Figure 1, Chart
GY) with values of 424.73 and 565.75, respectively. The
maximum peroxidase (POD) activity in rainfed and irrigated
conditions was observed in genotype 6 (0.49) and genotype
18 (0.34), respectively (Figure 1, Chart POD). For superoxide
dismutase (SOD), the highest values in rainfed and irrigated
conditions belonged to genotype 15 (1.02) and genotype 12
(0.64), respectively (Figure 1, Chart SOD). Catalase (CAT)
activity was most significant in genotype 12 (3.01) in rainfed
conditions and genotype 24 (1.56) in irrigated conditions
(Figure 1, Chart CAT). The highest soluble protein content
was found in genotype 14 (112.03) in rainfed conditions and
genotype 12 (167.09) in irrigated conditions (Figure 1, Chart
PROTEIN). Proline (PC) levels were highest in genotype
15 (10.14) in rainfed conditions and genotype 8 (7.24) in
irrigated conditions (Figure 1, Chart PC). The maximum
ascorbic peroxidase (APX) activity was recorded for genotype
6 (418.12) in rainfed conditions and genotype 15 (263.35) in
irrigated conditions (Figure 1, Chart APX). Finally, the highest
malondialdehyde (MDA) values in both conditions were
observed in genotypes 23 and 24 (0.45) in rainfed conditions
and genotype 23 (0.42) in irrigated conditions (Figure 1,
Chart MDA). Complete information on the comparison of the
mean genotypes for each trait is shown in Table 5.

Assessment of broad-sense heritability and genetic
gain of studied traits in rainfed and irrigated
conditions

The estimation of broad-sense heritability and genetic
gain for grain yield and biochemical traits under rainfed
conditions is summarized in Table 6. In rainfed conditions,
the average broad-sense heritability and genetic gain for
grain yield were 0.278 and 16.08%, respectively. Almost all
biochemical traits exhibited heritability above 0.90, including
PC (0.998), SOD (0.997), CAT (0.983), and APX (0.972).
Among these, PC showed the highest heritability. For genetic
gain, CAT (92.022%), SOD (89.91%), APX (67.62%), and PC
(63.28%) were most significant, with CAT ranking highest.
Under irrigated conditions, heritability and genetic gain for
grain yield were 0.604 and 33.20%, respectively. The traits
CAT (0.997), protein (0.989), PC (0.979), SOD (0.971), APX
(0.966) and POD (0.929) all demonstrated high heritability
(> 0.90), with CAT showing the highest value. Also, CAT
exhibited the most significant genetic gain (133.7%),
followed by SOD (86.9%), PC (83.19%), APX (80.39%). In
both conditions, the MDA trait showed the lowest heritability
and genetic gain.
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Table 3. Measurement methods of the studied traits and indices. Yi: Yield of a genotype under irrigated conditions; Yr: Yield of a genotype
under rainfed conditions; Y ,;: Mean yield of all genotypes under irrigated conditions; Y, : Mean yield of all genotypes under rainfed
conditions; 53 : Genotypic variance; 612) : Phenotypic variance; X: Overall mean of the trait; TCP: Trait Changes Percentage; MTIC: Mean
of the trait under irrigated conditions; MTRC: Mean of the trait under rainfed conditions. The PIC index for SSR markers was calculated
based on allele frequency at each locus across all genotypes. In the calculation of the RP index, Pi refers to the proportion of genotypes
that possess a particular band. Cov (x1x2): Covariance between variables x1 and x2. V(x1): variance of one trait (x1). V(x2): variance of
other trait (x2).

Traits and Indices

Measurement method and formulas

GY: Grain Yield

ATT: Abiotic Tolerance Index
(Moosavi et al, 2008)

SSPI: Stress Susceptibility Percentage Index
(Moosavi et al, 2008)

TOL: Tolerance
(Rossielli and Hamblin, 1981)

MP: Mean Productivity
(Rossielli and Hamblin, 1981)

GMP: Geometric Mean Productivity
(Fernandez, 1992)

HMP: Harmonic Mean Productivity
(Fernandez, 1992)

STI: Stress Tolerance Index
(Fernandez, 1992)

SSI: Stress Susceptibility Index
(Fischer and Maurer, 1978)

PEV: Press Evaluation
(Bouslama and Schapaugh, 1984)

RDY: Relative Decrease in Yield
(Emre et al, 2011)

h2b.s , GG: broad-sense Heritability and
Genetic Gain

(Kearsey and Pooni (1996) and the GLM
MANOVA analysis in SAS 9.3.1 software)

Correlation
(Miller et al, 1958)

TCP%: percentage of changes in the irrigated
environment compared to rainfed for traits
(Nourmand-moaied et al, 2001)

Polymorphic percentage
(Mohammadi and Prasanna, 2003)

PIC: Polymorphic Information Content Index
(Anderson et al, 1993)

MI: Marker Index
(Kumar et al, 2009)

EMR: Effective Multiplex Ratio Index
(Kumar et al, 2009)

RP: Resolving Power
(Altintas et al, 2008)

The grain weight from three 1m sections of the middle rows per plot.
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This index was obtained by multiplying the percentage of polymorphic loci by the
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Table 4. Analysis of combined variance in both rainfed and irrigated conditions for grain yield and biochemical characteristics in 25 bread
wheat genotypes. ns, not significant; *, significant at 5% probability level; **, significant at 1% probability level; S.0.V, Source of variations;
Error 1, is nesting the replication in the irrigated factor; Error 2, is the total error of the experiment.

. Peroxidase SuPerox1de Catalase Soluble Proline Ascorbic Malon-
S.0.v df  Grain yield . dismutase . . . .
activity .. activity protein content  peroxidase dialdehyde
activity
Irrigated 470283.30** 0.37%* 2.58%* 33.22*%%  32924.41**  272.49**  489561.60** 0.05%*
Error 1 4 21490.83 0.0003 0.0002 0.0004 11.35 0.02 178.19 0.001
Genotype 24 28250.64** 0.02%* 0.17%* 1.42% 1416.56™ 16.07** 21384.36* 0.005**
Genotypex 6237.08" 0.006** 0.05%F  0.63**  855.42%* 5.44%  8793.39%* 0.001"
Irrigated
Error 2 96 4496.36 0.001 0.0003 0.005 25.39 0.04 153.87 0.001
(CV) % 19.74 8.89 4.08 6.28 5.07 3.44 6.39 10.07

Figure 1. Bar graphs related to the comparison of mean genotypes in rainfed and irrigated conditions. GY, Grain Yield; POD, Peroxidase

Activity; SOD, Superoxide Dismutase Activity; CAT, Catalase Activity; PROTEIN, Soluble Protein; PC, Proline Concentration; APX, Ascorbic
Peroxidase Activity; MDA, Malon-dialdehyde.
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Analysis of trait-index correlations in wheat
genotypes under rainfed and irrigated conditions

The correlation patterns between studied traits and
drought tolerance indices revealed distinct profiles across
conditions. Yield in irrigated conditions (Y) showed strong
positive correlations (p < 0.01) with rainfed Yield (Yr; 0.71)
and the indices STI (0.92), MP (0.96), GMP (0.93), HMP
(0.91), SSI (0.52), TOL (0.78), ATT (0.90), SSPI (0.78), and
PEV (0.52), but exhibited a significant negative association
with RDY (-0.92). Similarly, Yr demonstrated strong positive
correlations with STI (0.91), MP (0.88), GMP (0.91), and
HMP (0.94) (p < 0.01), while having a negative correlation
with RDY (-0.91).

In irrigated environments, POD activity correlated
positively (p < 0.05) with its rainfed counterpart (0.44)
and the indices STI (0.44), MP (0.41), GMP (0.43), and
HMP (0.44), yet displayed a negative relationship with
RDY (-0.44). SOD enzyme activity showed high consistency
between the two conditions (irrigated vs. rainfed: 0.68; p <
0.01). Rainfed SOD further correlated positively with STI
(0.43), MP (0.41), GMP (0.43), and HMP (0.44) (p < 0.05)
but negatively with RDY (-0.43). CAT activity also followed
this pattern with significant concordance between irrigated
and rainfed conditions (0.44; p < 0.05).

For PC in irrigated conditions, inverse correlations
appeared with STI (-0.50), MP (-0.48), GMP (-0.51), and

HMP (-0.53) (p < 0.05/p < 0.01), in contrast to its positive
linkage with RDY (0.50; p < 0.05). PC also aligned with its
rainfed equivalent (0.51; p < 0.01) and showed negative
associations with SSI (-0.47) and PEV (-0.47) (p < 0.05).
APX and MDA activities maintained significant consistency
between the two conditions (APX: 0.46, MDA: 0.69; p <
0.05/p < 0.01).

Inter-index correlations revealed tightly coupled networks:
STI exhibited near-perfect positive alignment with MP (0.99),
GMP (0.99), and HMP (0.99) (p < 0.01), moderate ties to
ATI (0.69), TOL (0.49), and SSPI (0.49) (p < 0.05), and a
complete inverse correlation with RDY (-1.00; p < 0.01). The
MBE GME and HMP indices showed nearly identical mutual
relationships (0.99-1.00; p < 0.01) and positive associations
with ATI (0.64-0.74), TOL (0.44-0.56), and SSPI (0.44-
0.56) (p < 0.05/p < 0.01), while uniformly opposing RDY
(-0.99 to -1.00; p < 0.01).

SSI correlated strongly with PEV (1.00), TOL (0.93), SSPI
(0.93), and ATI (0.80) (p < 0.01). TOL demonstrated positive
linkages with SSPI (1.00), ATI (0.96), and PEV (0.93) (p <
0.01) but a negative correlation with RDY (-0.49; p < 0.05).
ATI correlated positively with SSPI (0.96) and PEV (0.80) (p
< 0.01) and negatively with RDY (-0.69; p < 0.01). Finally,
SSPI and PEV shared a strong positive correlation (0.93; p <
0.01), while SSPI was inversely associated with RDY (-0.49;
p < 0.05) (Figure 2).

Table 6. Estimation of broad-sense heritability and genetic gain for grain yield and biochemical characteristics in bread wheat genotypes
in rainfed and irrigated conditions. GY, Grain Yield; POD, Peroxidase Activity; SOD, Superoxide Dismutase Activity; CAT, Catalase Activity;
PROTEIN, Soluble Protein; PC, Proline Concentration; APX, Ascorbic Peroxidase Activity; MDA, Malon-dialdehyde.

Conditions Traits

Rainfed GY

POD
SOD
CAT
Protein
PC
APX
MDA
Irrigated GY
POD
SOD
CAT
Protein
PC
APX
MDA

Mean h? GG
283.75 0.278 16.08
0.340  0.750 28.74
0.560  0.997 89.91
1.58 0.983 92.022
84.57 0.791 28.044
6.79 0.998 63.28
251.23 0.972 67.62
0.390  0.250 6.82
395.75 0.604 33.203
0.240 0.929 42.18
0.300 0.971 86.9
0.640 0.997 133.7
114.2 0.989 42.932
4.09  0.979 83.19
136.98 0.966 80.39
0.350 0.250 5.373
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Figure 2. Heatmaps of Pearson’s correlation coefficients between the studied characteristics and drought tolerance indices in 25 wheat
genotypes in rainfed and irrigated conditions. Yi, Yield in irrigated conditions; Yr, Yield in rainfed conditions; i, irrigated; r, rainfed; POD,
Peroxidase Activity; SOD, Superoxide Dismutase Activity; CAT, Catalase Activity; PROTEIN, Soluble Protein; PC, Proline Concentration;
APX, Ascorbic Peroxidase Activity; MDA, Malon-dialdehyde; STI, Stress Tolerance Index; MB Mean productivity; GMB Geometric Mean
Productivity; HMB Harmonic Mean Productivity; SSI, Stress Susceptibility Index; TOL, Tolerance; ATI, Abiotic Tolerance Index; SSPI, Stress
Susceptibility Percentage Index; PEV, Press Evaluation; RDY, Relative Decrease in Yield. Negative and positive correlations are indicated by
red and blue cells, respectively. Color darkness scales with correlation strength (I*r*|) (Significance: *r* = 0.40 at *p* < 0.05*; *r* > 0.50
at **p* < 0.01).
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Principal components analysis and biplot
graphic display based on drought tolerance
indices and studied traits in rainfed conditions

PCA is calculated based on the mean of traits and
genotypes. The results of both are shown in Figure
3. The PCA result for traits is presented in Table 7.
It demonstrates that the first four components, with
eigenvalues greater than one, contributed the most to
explaining the variance in the dataset. Specifically, the
first component explained 42.303% of the variance.
The second component accounted for 21.78%. The
third component contributed 9.612%. The fourth
component explained 7.353%. Together, these four
components explained 81.05% of the variance.

The first component was characterized by positive
and high coefficients for the grain yield trait and the
MB GMB HMB STI, ATI, TOL and SSPI indices, as well
as negative and high coefficients for the RDY index.
This component was labelled the drought-tolerant
PCA. The second component had positive and high
coefficients for the SSI, PEV, TOL, SSPI and ATI indices,
along with negative and high coefficients for grain
yield and the superoxide dismutase enzyme. This

Figure 3. Biplot diagram of principal components analysis for drought tolerance indices and studied traits of wheat genotypes in rainfed

conditions.

component was referred to as the drought-stress PCA. The
third component showed positive and high coefficients for the
soluble protein and proline traits, while having negative and
high coefficients for the peroxidase and ascorbic peroxidase
enzymes. The fourth component was defined by positive and
high coefficients for the catalase enzyme activity and malon-
dialdehyde traits, and negative and high coefficients for
proline and peroxidase enzyme.

According to the data, a biplot of the first two principal
components was generated to analyze the traits and
indicators under investigation. Based on the biplot (Figure
3), genotypes 10, 15, 6, 18, 13, and the Pishtaz cultivar,
which were positioned near the vectors corresponding to the
most effective drought tolerance indicators (MB STI, GMP
and HMP), demonstrated high yields in rainfed and irrigated
conditions. Furthermore, in rainfed conditions, traits such
as grain yield, superoxide dismutase activity, ascorbic
peroxidase activity, proline content, malon-dialdehyde
levels, and catalase enzyme activity were consistent with
group A genotypes (those with high yield in both rainfed and
irrigated conditions). Conversely, genotypes 22, 11, 4, 1, 5,
3, 12 and 16 exhibited the lowest levels of drought tolerance
based on the selected indices, particularly the RDY index.
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Table 7. Principal components analysis of 25 wheat genotypes in rainfed conditions. GY, Grain Yield; POD, Peroxidase Activity; SOD,
Superoxide Dismutase Activity; CAT, Catalase Activity; PROTEIN, Soluble Protein; PC, Proline Concentration; APX, Ascorbic Peroxidase
Activity; MDA, Malon-dialdehyde; STI, Stress Tolerance Index; MB Mean productivity; GMB Geometric Mean Productivity; HMB Harmonic
Mean Productivity; SSI, Stress Susceptibility Index; TOL, Tolerance; ATI, Abiotic Tolerance Index; SSPI, Stress Susceptibility Percentage

Index; PEV, Press Evaluation; RDY, Relative Decrease in Yield.

Traits and indices Component 1

Component 2

Component 3 Component 4

GY 0.266
POD 0.008
SOD 0.138
CAT -0.010
Protein -0.069
PC 0.034
APX 0.097
MDA 0.036
STI 0.341
MP 0.349
GMP 0.342
HMP 0.334
SSI 0.179
TOL 0.270
ATI 0.318
SSPI 0.270
PEV 0.179
RDY -0.341
Eigenvalues 7.61
% of variance 42.303
Cumulative % 42.303

-0.330 0.085 -0.030
0.070 -0.494 -0.344
-0.234 -0.124 0.170
-0.153 -0.135 0.604
0.097 0.592 0.077
-0.092 0.345 -0.489
-0.178 -0.469 -0.197
0.005 -0.064 0.441
-0.155 0.052 -0.023
-0.120 0.064 -0.002
-0.151 0.064 -0.010
-0.182 0.063 -0.018
0.429 -0.044 -0.001
0.332 -0.016 0.050
0.227 -0.009 0.055
0.332 -0.016 0.050
0.429 -0.044 -0.001
0.155 -0.052 0.023

3.92 1.73 1.33
21.78 9.612 7.353
64.08 73.691 81.05

Determination of the genetic variability of
wheat genotypes based on SSR markers

After evaluating 20 primer pairs across 25 bread wheat
genotypes, 16 primers exhibiting high levels of polymorphism.
33 out of 35 total bands, showed high polymorphism,
(93.75%). On average, each primer produced 2 bands, with
a mean polymorphism of 2 bands per primer. The highest
number of alleles was detected with primer XGWM136 (five).
The primers XGWM155, XGWM234, XCFD168, XGWMS577,
XGWM642 and XCFD5 exhibited the highest polymorphic
information content indices. Among the molecular indices
assessed, the highest marker index values were identified for
primers XGWM136, XCFD168 and XGWM350. The primers
XGWM136, XGWM350, XCFD168 and XGWM165 recorded
the highest Effective Multiplex Ratio. Regarding Resolving
Power, the primers XGWM4, XCFD168 and XGWM350 showed
the highest values (Table 8). The SSR markers banding
pattern generated by the XGWM2, XGWM124, XGWM4, and
XCFD5 primers for the wheat genotypes examined in this
study is illustrated in Figure 4A-D.

Molecular variance analysis

The molecularvariance analysis (AMOVA) for the SSR markers
is presented in Table 9. Accordingly, a significant difference
between the groups was observed at the 5% probability level.
The proportion of variance attributed to intergroup differences
was 10%, while intragroup variance accounted for 90%.

Investigating the relationship of studied
characteristics and indices with SSR markers

The critical step in this process is assessing the efficiency
of linkage markers associated with quantitative traits
and identifying informative markers. To pinpoint alleles
influencing grain yield, biochemical traits and drought
tolerance indices in wheat genotypes under irrigated and
rainfed conditions, an association analysis was conducted.
This analysis examined the relationship between eight
measured traits and ten indices (as dependent variables) and
the molecular markers under study (as independent variables)
using stepwise multiple regression analysis (Table 10, Table
11 and Table 12). The relationship with SSR markers was
analyzed exclusively for characteristics that were statistically
significant in the variance analysis.
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Table 8. Molecular characteristics of more effective SSR primers in bread wheat genetic diversity in the present study.

Marker No. of polymorphic Polymorphic information Marker Effective multiplex ~ Resolving

bands content Index ratio Power
XGWM350 3 0.337 1.011 3 3.12
XGWM155 1 0.499 0.499 1 0.96
XGWM577 2 0.467 0.934 2 1.60
XGWM642 1 0.461 0.23 0.5 0.72
XGWM136 5 0.352 1.76 5 2.32
XGWM165 3 0.324 0.973 3 2.96
XGWM4 2 0.211 0.422 2 3.52
XCFD5 2 0.442 0.883 2 1.76
XCFD168 3 0.489 1.466 3 3.20
XGWM234 1 0.493 0.493 1 0.88

Figure 4. Patterns of some SSR markers used in the present study in wheat genotypes. A, XGWM2 primer; B, XGWM124 primer; C, XGWM4
primer; D, XCFD5 primer.

Table 9. Molecular variance analysis (AMOVA) of wheat genotypes. *, significant at 5% probability level.

Predicted Sou.rct.e of daf Ss MS Estm_lated Percentage of'total 0,
Group variation variance variance

Among Groups 3 25.85 8.62 0.68 10 0.039*
4 Within Groups 21 126.83 6.04 6.04 90

Total 24 152.68 6.72 100
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Grain yield and biochemical characteristics in rainfed
conditions

The analysis identified two markers, XGWM124(a2) and
XGWM410(al), as significantly related to yield in rainfed
conditions, explaining 34% of the variation (Table 10).
Additionally, the marker XGWM124(a2) showed a strong
correlation with superoxide dismutase enzyme activity in
rainfed conditions, accounting for 12% of the variation. The
catalase enzyme activity was notably associated with the marker
XCFD168(a3), contributing 16% to the observed variance.
Similarly, the ascorbic peroxidase enzyme activity displayed
significant associations with three markers (XGWM2(al),
XGWM234(al), and XGWM350(a2)), collectively explaining
52% of the variance. Moreover, a single locus amplified by
the marker XGWM155(al) was significantly associated with
the malon-dialdehyde trait, accounting for 18% of the total
variation. Overall, eight gene loci were identified as being
associated with yield and biochemical characteristics in rainfed
conditions. Notably, the XGWM124(a2) marker was shared
between grain yield and the superoxide dismutase enzyme
activity, highlighting its importance.

Grain yield and biochemical characteristics in
irrigated conditions

The analysis revealed that grain yield was significantly
correlated with seven amplified loci, including XGWM577(a2,
al), XGWM136(a3, a4), XGWM265(al), XGWM410(al),
and XGWM2(a2) (Table 11). Among these, the loci
XGWM136(a3), XGWMS577(a2), and XGWM410(al)
demonstrated the most significant and positive effects. The
marker XCFD5(a2) was significantly associated with the
superoxide dismutase trait in irrigated conditions, explaining
17% of the variation. For the catalase enzyme activity, the
marker XGWM410(al) contributed 13% to the total variance.
Altogether, nine gene loci were identified as being linked to
yield and biochemical characteristics in irrigated conditions.
Notably, the XGWM410(al) marker was shared between
grain yield and the catalase enzyme activity, underlining its
importance.

Table 10. Markers association with grain yield and biochemical characteristics in rainfed conditions. *, significant at 5% probability level;
**significant at 1% probability level; 1 al, a2, a3, a4, and a5 are the average alleles 1, 2, 3, 4, and 5, respectively.

Traits Marker” Regression Standard error t-value  Significance R? Adjusted R?
coefficient (B) (SE) level
Grain Yield Constant 320.44 17.871 17.931 xx 0.397 0.342
XGWM124(a2) -68.482 20.944 -3.27 i
XGWM410(al) 52.57 22.02 2.39 *
Ascorbic Constant 84.99 43.78 1.94 ns 0.583 0.523
Peroxidase XGWM2(al) 120.18 30.36 3.96
XGWM234(al) -80.304 24.72 -3.25 o
XGWM350(a2) 114.60 44.99 2.55
Malon-dialdehyde  Constant 0.402 0.009 43.67 xx 0.217 0.183
XGWM155(al) -0.034 0.013 -2.53
Catalase Activity Constant 1.24 0.197 6.27 e 0.193 0.158
XCFD168(a3) 0.62 0.264 2.35
Superoxide Constant 0.716 0.086 8.34 ad 0.161 0.124
Dismutase ACtiVty G124 (a2) -0.212 0.101 2.1 *
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Table 11. Markers association with grain yield and biochemical characteristics in irrigated conditions. *, significant at 5% probability level;
**, significant at 1% probability level; 1 al, a2, a3, a4, and a5 are the average alleles 1, 2, 3, 4, and 5, respectively

Traits Marker" coelf{f?é:izt:tSi(%l; ef;ﬁ?cggg)l t-value Signiﬁclz; I:Iceel R?  Adjusted R?
Grain Yield Constant 374.72 12.76 29.37 0.885 0.838
XGWM577(a2) 145.7 19.04 7.653
XGWM136(a3) 171.744 33.4 5.143 *
XGWM265(al) -122.541 26.084 -4.7
XGWM410(al) 89.64 18.29 4.902
XGWM2(a2) -62.8 18.43 -3.41
XGWM577(al) -58.85 16.294 -3.612 i
XGWM136(a4) -79.04 29.13 -2.713
Superoxide Constant 0.233 0.036 6.513 wx 0.206 0.171
Dismutase Activity  y cppyg (a0) 0.113 0.046 2.44
Catalase Activity Constant 0.55 0.089 6.13 0.163 0.126
XGWM410(al) 0.39 0.183 2.12
Discussion

Drought tolerance indices

The analysis identified a significant correlation between
the ATI index and six amplified loci: XGWM136(a,
a4), XGWM577(a2), XGWM2(a2), XGWM410(al) and
XGWM265(al), collectively explaining 84% of the total
variance (Table 12). The TOL and SSPI indices were
significantly associated with the markers XGWM136(a3,
a4), XGWM265(a2), XGWM577(a2) and XGWM165(a2),
accounting for 72% of the variation. Additionally, the MB
GMP and HMP indices demonstrated strong associations
with three loci amplified by the markers XGWM124(a2),
XGWM410(al) and XGWM165(al), explaining 57%, 57%
and 56% of the total variation, respectively. The SSI and
PEV indicators were significantly linked to the markers
XGWM136(a3, a4) and XGWM265(a2), accounting for
51% of the variance. Furthermore, the STI and RDY indices
showed significant associations with two loci amplified
by the markers XGWM124(a2) and XGWM410(al),
each explaining 48% of the variation. Among these, the
XGWM410(al) marker exhibited the most substantial
positive effect on the STI index, while the XGWM124(a2)
marker had the strongest impact on the RDY index. Overall,
35 gene loci were identified for the drought tolerance
indicators, with 10 gene loci being common across all
measured indices.

Significant differences in most of the studied characteristics
highlighted the genetic diversity among wheat genotypes. This
diversity suggests the potential to select superior cultivars
based on grain yield and biochemical characteristics in rainfed
and irrigated conditions. In addition, based on the percentage
of changes in the irrigated environment compared to rainfed
(TCP%), grain yield and soluble protein increased under
irrigated conditions and decreased with stress. But on the
other hand, the activity of peroxidase, superoxide dismutase,
catalase, proline content, ascorbic peroxidase and malon-
dialdehyde increased with stress, and the increase in the
activity of these biochemical compounds aligns with enhanced
stress resistance and reduced stress-induced damage.
Therefore, the presence of a better antioxidant enzyme system,
as evidenced by higher POD, SOD, CAT and APX activities in
drought-tolerant wheat genotypes, could indicate that these
genotypes are more efficient in removing superoxide anions
produced in plants due to drought stress. Similarly, Saed-
Moucheshi et al (2019) reported significant differences among
genotypes for all yield and biochemical traits in triticale under
regular irrigation and drought stress conditions. Furthermore,
they observed significant increases in proline, malon-
dialdehyde, protein content and antioxidant enzyme activities
in response to drought stress, which aligns with the findings
of this study. In a study by Pour-Aboughadareh et al (2022)
evaluating biochemical traits in wild relatives of wheat under
drought stress, ANOVA results revealed significant variations
across growth conditions, except for dry matter in control
and drought stress environments. Additionally, the activities
of all antioxidant enzymes increased compared to the control
conditions, which is consistent with current research.
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Table 12. Markers association with drought tolerance indices of wheat genotypes. *, significant at 5% probability level; **, significant at
1% probability level; 1, al, a2, a3, a4, and a5 are the average alleles 1, 2, 3, 4, and 5, respectively. STI, Stress Tolerance Index; MB Mean
productivity; GMB Geometric Mean Productivity; HMB Harmonic Mean Productivity; SSI, Stress Susceptibility Index; TOL, Tolerance; ATI,
Abiotic Tolerance Index; SSPI, Stress Susceptibility Percentage Index; PEV, Press Evaluation; RDY, Relative Decrease in Yield.

Indices Marker® Regression  Standard error t-value Significance R? Adjusted R?
coefficient (B) (SE) level
ATI Constant 21398.56 2357.34 9.08 il 0.881 0.841
XGWM136(a3) 38568.94 6801.55 5.67 xx
XGWM577(a2) 23254.62 3825.74 6.08 o
XGWM2(a2) -18557.49 3870.85 -4.79 ol
XGWM410(al) 16573.71 3837.98 4.32 xH
XGWM265(al) -17499.84 5480.78 -3.19 wx
XGWM136(a4) -17941.44 5977.63 -3 s
SSPI Constant 17.01 2.07 8.23 i 0.775 0.716
XGWM136(a3) 26.8 4.25 6.31 d
XGWM136(a4) -13.24 3.5 -3.79 wx
XGWM265(a2) -4.67 2.1 -2.22 *
XGWM577(a2) 5.81 2 291 i
XGWM165(a2) -5.56 2.22 -2.5 *
TOL Constant 134.65 16.35 8.24 ol 0.775 0.716
XGWM136(a3) 212.14 33.63 6.31 xx
XGWM136(a4) -104.84 27.68 -3.79 o
XGWM265(a2) -36.93 16.6 -2.23 *
XGWM577(a2) 46 15.81 291 el
XGWM165(a2) -43.99 17.59 -2.502
MP Constant 393.77 17.393 22.64 e 0.619 0.565
XGWM124(a2) -87.581 20.85 -4.201
XGWM410(al) 61.89 21.85 2.833 el
XGWM165(al) -72.78 34.633 -2.101
GMP Constant 386.27 16.91 22.85 x 0.619 0.565
XGWM124(a2) -84.36 20.27 -4.163 il
XGWM410(al) 59.544 21.24 2.804
XGWM165(al) -73.03 33.67 -2.17
HMP Constant 378.97 16.64 22.78 x 0.613 0.558
XGWM124(a2) -81.242 19.94 -4.074 s
XGWM410(al) 57.29 20.89 2.742 *
XGWM165(al) -73.24 33.13 -2.211
SSI Constant 1.11 0.121 9.16 x 0.575 0.514
XGWM136(a3) 1.36 0.262 5.2 i
XGWM136(a4) -0.824 0.231 -3.56 i
XGWM265(a2) -0.309 0.147 2.1 *
PEV Constant 0.314 0.034 9.16 xx 0.575 0.514
XGWM136(a3) 0.386 0.074 5.2 o
XGWM136(a4) -0.233 0.065 -3.57 el
XGWM265(a2) -0.087 0.042 -2.1 *
STI Constant 0.968 0.081 11.89 wx 0.526 0.483
XGWM124(a2) -0.416 0.095 -4.36 bl
XGWM410(al) 0.294 0.1 2.93 sk
RDY Constant -1416.28 127.5 -11.11 ol 0.526 0.483
XGWM124(a2) 650.93 149.42 4.36 wx

XGWM410(al) -460.43 157.09 -2.93 wk
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In a study on 20 bread wheat cultivars under water stress
and non-stress conditions, water stress caused a significant
54.9% reduction in grain yield and reductions in all studied
traits except grain protein content (Al-Naggar et al, 2020),
contrasting with the present study regarding protein content.
Similarly, Firouzian et al (2023) reported that stress reduced
yield components, physiological traits, and ultimately
decreased grain yield by about 25% in bread wheat, while,
in the present study, drought stress reduced grain yield by
28.3%. In a study investigating terminal heat stress effects
on wheat cultivars, variance analysis of phenological
traits, grain yield and biochemical traits showed significant
variations in genotypes, environments, and genotype X
environment interactions (for grain yield, SOD, POD, APX,
CAT and proline) (Kumar et al, 2023a). In the present study,
variance analysis also revealed significant variations for grain
yield and all biochemical traits in the environment effect,
for all traits except soluble protein in the genotype effect,
and for all traits except grain yield and malon-dialdehyde
in the interaction effects. Similarly, in a study by Mkhabela
et al (2019) investigating drought-tolerant wheat genotypes
under drought stress and non-stress conditions, the effects of
genotype, stress condition, and genotype X stress condition
interaction were significant for the tested traits, indicating
differential genotypic responses to selection, in agreement
with this study.

Estimating heritability helps plant breeders identify
elite genotypes (Farshadfar, 2010). Likewise, genetic
advancement reflects the mean genotypic value relative
to the parental population and serves as an indicator of
the genetic gain achieved through selection (Kumar et al,
2023b). High broad-sense heritability suggests that the trait
is minimally influenced by environmental factors. However,
modifying such a trait may be less beneficial, as broad-
sense heritability encompasses the total genetic variance,
including additive (fixable), dominance and epistasis (non-
fixable) variances. On the other hand, high genetic advance
or genetic gain indicates that the trait is primarily governed
by additive genes, making selection a practical approach
for improvement. Conversely, low genetic advance or gain
suggests that the trait is controlled by non-additive genes,
in which case heterosis breeding would be a more effective
strategy (Farshadfar, 2010; Kaur et al, 2023). Traits with
heritability (h2 > 60.0%) and genetic gain (GG > 20.0%)
indicate that the observed variation is predominantly due to
genetic factors, thereby making these traits reliable candidates
for selection (Faysal et al, 2022; Kaur et al, 2023), which in
the present study also included most biochemical traits with
heritability above 90% and genetic gain above 30%. This
indicates the high influence of genetic factors and aligns with
the aforementioned findings. In summary, this study showed
that broad-sense heritability and genetic gain for catalase,
superoxide dismutase activity, proline content and ascorbic
peroxidase activity were high under both irrigated and
rainfed conditions, and were lowest for malon-dialdehyde.
Therefore, it is recommended to use these traits as ideal
criteria, along with yield, to select high-yielding genotypes in
breeding programmes. In research on bread wheat genotypes,
moderate heritability values and high genetic gain for grain
yield were recorded, suggesting these traits are promising
targets for improvement through favorable selection (Amare,
2023). In the present study, moderate broad-sense heritability
and genetic gain were obtained for grain yield. Similarly,

in the study by Saed-Moucheshi et al (2019), grain yield
showed heritability values of 32.14% and 29.62% under
normal irrigation and drought stress conditions, respectively,
indicating environmental influence. Additionally, SOD and
MDH showed the highest heritability under both conditions,
while in the present study, CAT, SOD, PC and APX showed
the highest heritability, and MDA the lowest heritability in
both environmental conditions. The heritability of grain yield
was 27.8% and 60.4% in rainfed and irrigated conditions,
respectively. In studies by Shah et al (2019) on bread wheat
under rainfed conditions and Sallam et al (2024b) on bread
wheat under heat stress, the traits grain protein content,
proline and catalase, respectively, showed high heritability
and genetic gain, consistent with the study. Additionally,
various researchers have utilized broad-sense heritability (Li
et al, 2023; Sowadan et al, 2024) and genetic gain (Yusuf et
al, 2021; Dukamo et al, 2023) to examine genetic variability
and identify suitable traits for breeding programmes, aligning
with the study’s findings regarding the importance of these
parameters.

These indices are used to calculate the level of drought
tolerance in plants. Different indices are designed based on
different traits that are related to grain yield. These indices
are used in different agronomic, biochemical, molecular and
even cytogenetic categories to select the best genotype. The
correlation heatmaps were created to analyze the relationships
between studied traits and drought tolerance indices in
rainfed and irrigated conditions. Based on the nature of the
indicators, it was observed that most of the studied traits
showed a highly significant correlation with indices such as
STI, MBE GME HMP and RDY. These indicators were identified
as the most effective for selecting drought-tolerant and
high-performing genotypes. Additionally, these indices had
a strong influence on the first principal component, which
was identified as the drought tolerance component. Similar
to the present study, Reddy et al (2023), used correlation
heatmaps to examine the relationship between phenotypic
traits and drought tolerance indices such as STI, MB and
GMP Also, in the study by Giovenali et al (2023), Pearson
correlation coefficients were analyzed using heatmaps to
investigate the relationships between yield-related traits,
physiological parameters and biochemical parameters, and
significant positive and negative correlations were obtained.
In a related study, correlation heatmaps were employed to
explore the relationships between phenological, physiological
and biochemical variables in optimal conditions, heat stress
conditions, prolonged heat stress conditions, and a combined
environment. In optimal conditions, the correlation between
seed yield and the APX and CAT traits was positive but not
statistically significant. In heat stress conditions, a positive and
significant correlation was observed between seed yield and
the traits proline and SOD. When heat stress was prolonged,
the correlation between seed yield and CAT became negative
and was not significant. However, in high-temperature
conditions, seed yield demonstrated a positive and significant
correlation with proline, SOD and POD, while its relationship
with APX remained positive but non-significant (Kumar et
al, 2023a). In the present study, CAT and APX did not show
statistically significant correlations with any of the drought
tolerance indices. Under irrigation conditions, there was a
significant negative correlation between PC and the SSI and
PEV indices. There was also a significant positive correlation
between POD and the STI, MBE GMP and HMP indices, and a
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significant negative correlation with the RDY index. Under
rainfed conditions, the correlation of SOD with the STI, MB
GMP and HMP indices was positive and significant, and with
the RDY index was negative and significant.

Principal component analysis (PCA), a multivariate
statistical method, serves as an efficient approach to data
reduction by identifying strong correlations among variables
to derive clear conclusions. In this study, PCA and biplot
visualization were applied to analyze traits across 25 bread
wheat genotypes under rainfed conditions. The first two
principal components (PC1 and PC2) accounted for 64.08%
of the total variation in drought tolerance indices and
studied traits. Biplot visualization revealed considerable
genetic diversity among genotypes in response to drought
stress. These findings align with existing literature: Pour-
Aboughadareh et al (2022) reported PC1 and PC2 explaining
64.52% of biochemical variation in wild wheat species under
drought (PC1 = 47.86%; PC2 = 16.66%). Sallam et al,
(2024a) identified four principal components (eigenvalues
>1) capturing 89.79% of variance across 30 agro-physio-
biochemical traits. PC1 correlated with 24 traits (e.g. grain
yield, catalase, peroxidase, superoxide dismutase and
proline), PC2 with five traits (e.g. soluble protein), PC3
showed no significant associations, and PC4 linked to glycine
betaine. Similarly, in the present study, the first four principal
components explained 81.05% of total variance: PC1 (grain
yield and drought-tolerance indices), PC2 (drought-stress
indices), PC3 (soluble protein and proline), and PC4 (catalase
activity and malon-dialdehyde).

Of the 20 SSR markers tested, 16 showed significant
polymorphism. Genetic diversity assessment of bread
wheat genotypes utilizing SSR markers revealed XCFD168,
XGWM350 and XGWM136 as fully polymorphic (100%).
These markers demonstrated the highest allele counts
and superior performance across key genetic indices:
polymorphism information content (PIC), marker index (MI),
effective multiplex ratio (EMR), and resolving power (RP)
(Table 8). Consequently, these represent optimal candidates
for advanced wheat genetic analyses. Notably, the significant
discriminatory power achieved with limited primer sets
confirms that highly polymorphic SSRs efficiently differentiate
both individual accessions and population subgroups. These
findings corroborate prior research identifying the same three
markers as exceptionally informative. For instance, the marker
XGWM136 was similarly highlighted by Budak et al (2013) and
Kaur et al (2016), while Khan et al (2021) identified XGWM136
and XCFD168, and Haque et al (2020) emphasized XGWM350,
collectively supporting their utility as reported in this study. In
genomic diversity research on bread wheat using SSR markers,
markers XGWM136, XCFD168, XGWM2, XGWM155, XCFDS5,
XGWM165, XGWM33 and XGWM129 were used (Ahmed et
al, 2020), consistent with the marker selection in this study.
Additionally, research on bread wheat genetic diversity
revealed high PIC and marker index, showing greater diversity
in the A and B genomes compared to the D genome (Feltaous,
2019). In the present study, more diversity was observed in the
B genome, followed by D and A. In another study, 17 bread
wheat genotypes evaluated with 16 SSR markers showed only
11 markers with high polymorphism and reproducibility (Kara
et al, 2020). Similarly, a study assessing the genetic diversity
and population structure of wheat genotypes employed ten SSR
markers to characterize diversity across 22 genotypes (Hassan
et al, 2025). Here, 25 bread wheat genotypes examined with

20 SSR markers revealed 16 with significant polymorphism.
Regarding PIC values and marker utility, these findings
align with prior reports. For example: in SSR evaluation of
bread wheat, the PIC ranged from 0.276 to 0.541 (average:
0.384), using primers XGWM192 and XGWM642 (Islam et
al, 2012). Three subsequent studies (El-Rawy and Hassan,
2021; Ahmed et al, 2024; Bavandpouri et al, 2025) reported
a PIC range of 0.20-0.50 (average: 0.33). El-Rawy and
Hassan (2021) utilized primers XGWM165, XGWM155, and
XGWM577, with XGWM577 showing superior performance.
Bavandpouri et al (2025) introduced three markers -
namely XCFD168, XGWM350, and XGWM136 — as the most
significant; while Ahmed et al (2024) highlighted XGWM642.
In a separate analysis of ten bread wheat genotypes using ten
SSR markers, Kumari et al (2025) detected 64 polymorphic
bands, where alleles per locus ranged from 1 to 4 (highest
for XGWM2 and XGWM265). In the present study, 33 out of
35 bands were polymorphic. The highest number of alleles
(five) was observed for primer XGWM136, while the lowest
number (two alleles) was recorded for primers XGWM155,
XGWM410 and XGWM234. Collectively, these findings
confirm SSR markers as reliable indirect selection tools for
more efficient cultivar improvement.

Genetic structure within populations is commonly
analyzed through variance analysis, where the variance
between and within groups is determined based on the
genetic distances among individuals. AMOVA is particularly
effective in partitioning variance in wild species and among
groups of cultivars originating from different regions
(Farshadfar, 2023). The results of AMOVA revealed that
the observed grouping of bread wheat genotypes could, to
some extent, be explained by the diversity in SSR marker
bands. The ,,, statistic is employed as a criterion to test the
assumption of population differentiation at the relevant level.
In this experiment, AMOVA indicated that the @, statistic
was low due to the high genetic diversity observed within
the populations. Similar findings were reported in a study
investigating the genetic diversity of bread wheat using ISSR
and SSR markers, where AMOVA for both types of markers
revealed that genetic variation within species surpassed
the genetic diversity among them (Jabari et al, 2023).
Additionally, in another study, AMOVA results demonstrated
that 19% of the total genetic variation occurred among
subpopulations, while the remaining 81% was attributed to
individual differences within each subpopulation (Sowadan
et al, 2024).

In drought tolerance research, pinpointing QTLs linked
to drought-responsive traits is pivotal for deciphering their
genetic mechanisms (Sallam et al, 2019). To identify relevant
SSR markers, regression analysis was conducted between
grain yield and biochemical traits under rainfed and irrigated
conditions, with ten drought tolerance indices as dependent
variables and marker gene locations as independent variables.
Results revealed significant trait—primer relationships. A
key advantage of this multivariate regression approach
is its efficiency in QTLs detection, reducing time and cost
while eliminating the need for mapping populations (Ruan
et al, 2009). This study specifically aimed to identify
alleles correlated with grain yield and biochemical traits as
informative markers. Outcomes supporting this objective are
detailed in Table 10, Table 11 and Table 12. Critical associations
include: XCFD168 marker showing strong correlation with
catalase activity under rainfed conditions; XGWM350 linked
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to ascorbic peroxidase activity (rainfed); and XGWM136
associated with yield under irrigated conditions and ATI,
TOL, SSPI, SSI and PEV indices. Notably, XGWM410(a,)
correlated with yield in both environments, catalase activity
under irrigation, and multiple indices; XGWM2(a2) tied to
irrigated yield, rainfed ascorbic peroxidase activity, and ATT;
while XGWM124(a2) demonstrated associations with yield,
rainfed superoxide dismutase activity, and several indices.
In a study investigating associations between biochemical
traits and stress tolerance indices in wheat under drought
using 24 SSR markers, two markers were linked to APX and
three to CAT in control conditions, whereas under drought
stress, two markers associated with APX and one with POD,
alongside two markers significantly correlated with the STI
index. These results suggest genomic regions governing
growth and developmental characteristics across conditions
(Pour-Aboughadareh et al, 2022). Comparatively, in the
current study, biochemical trait analysis revealed one marker
correlated with SOD and one with CAT under irrigation,
while under rainfed conditions, one marker associated with
SOD, one with CAT, three with APX and one with MDA.
Regarding STI index, consistent with Pour-Aboughadareh
et al (2022), two markers showed significant correlations.
In a linkage mapping study for photosynthesis and yield
traits under moisture stress and drought indices (SSI and
STI) in winter bread wheat, 28 linkages were identified
for drought tolerance indices, with one marker consistently
associated across two seasons (Saeed et al, 2017). Here, 35
linkages emerged for drought indices, four of which were
associated with both SSI and STI. El-Rawy and Hassan
(2021) reported SSR markers XGWM260 and XGWM573
as specific to drought-tolerant bread wheat genotypes (low
DSI values), suggesting marker-trait associations for drought
tolerance. In contrast, our study identified XGWM136 and
XGWM265 as significantly associated with SSI. Negisho et
al (2022) detected 184 marker-trait associations (MTAs) for
drought indices in Ethiopian durum wheat, with six MTAs (on
chromosomes 2B, 3B, 4A, 5B and 6B) positively affecting GY-
GMP Notably, 41 MTAs (22.28%) associated with = 2 indices,
of which 16 (39.02%) linked to GMP and STI. Similarly, we
identified an MTA positively affecting GMP on chromosome
2B, along with 35 gene loci for drought indices —10 (28.57%)
common to all indices, with 30% of stable MTAs associated
with GMP and STI. Across these studies, a positive regression
coefficient indicates that selecting genotypes harbouring such
alleles may enhance yield and drought tolerance.

The association between individual markers and multiple
traits may arise from pleiotropic effects or overlapping
QTLs influencing diverse characteristics. Primers such as
XGWM136, XGWM234 and XCFD168 — previously used to
investigate grain yield and agronomic traits relationships
via SSR markers with potential for heat-tolerance breeding
(Khan et al, 2021) — were similarly employed in this study,
with XCFD168 and XGWM136 emerging as superior markers.
Consistent with our findings, numerous studies report
significant yield-marker associations: Maccaferri et al (2011)
established XGWM410-yield relationships; Amalova et al
(2024) documented correlations between grain yield and
XGWM124. Bavandpouri et al (2025) reported significant
relationships between XGWM265 and grain yield under
irrigated conditions, and between XGWM410, XGWMS577,
and XGWM124 markers and grain yield under both rainfed
and irrigated conditions, while Eldemery et al (2022) and

Firouzian et al (2023) observed XGWMS577-yield linkages
under heat stress. Concurrently, XGWM165 — also utilized
here — showed notable associations with SSPI, TOL, MBE GMB
and HMP indices, aligning with our results and collectively
reinforcing these outcomes. Ultimately, this research
confirms that molecular markers exhibiting strong regression
coefficients for biochemical traits and drought tolerance
indicators offer breeders actionable insights. Such markers
enable selection of environmentally stable QTLs linked to
yield and drought tolerance, accelerating the development
of superior genotypes. Moreover, the identified MTAs hold
direct utility in wheat breeding programmes targeting
drought stress, particularly for marker-assisted selection and
gene pyramiding strategies.

Conclusion

Molecular markers linked to biochemical traits can
accelerate the identification of drought-tolerant germplasm,
enhancing breeding efficiency. Significant genotypic variance
confirmed substantial genetic diversity and differential
drought stress responses. Key biochemical traits — catalase
(CAT), superoxide dismutase (SOD) activity, proline content
(PC), and ascorbate peroxidase (APX) activity — exhibited
high heritability (> 90%) and genetic advance (> 30%)
under both irrigated and rainfed conditions, unlike malon-
dialdehyde (MDA). Thus, these traits are recommended
for selecting high-yielding genotypes. Principal component
analysis (PCA, 64.08% variance explained) and correlation
identified stress tolerance index (STI), mean productivity
(MP), geometric mean productivity (GMP), harmonic mean
productivity (HMP), and relative decrease in yield (RDY)
as the most effective drought tolerance indices, strongly
correlated with grain yield and biochemical traits. Genotypes
6, 10, 15, 18, 13, and Pishtaz demonstrated superior drought
tolerance, high yield potential, and optimal biochemical
performance (SOD, APX, PC, MDA, CAT) under stress. Among
20 SSR markers, 16 showed significant polymorphism.
Markers XCFD168 (rainfed-CAT), XGWMS350 (rainfed-
APX), XGWM124(a,) (yield, rainfed-SOD, multiple indices),
XGWM136 (irrigated yield, ATI, TOL, SSPI, SSI, PEV),
XGWM410(al) (yield in both environments, irrigated-CAT,
multiple indices), and XGWM2(a2) (irrigated yield, rainfed-
APX, ATI) exhibited significant trait associations. These
markers are strongly recommended for marker-assisted
breeding to improve yield and drought tolerance.
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