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Abstract: This work explains the reasons why a bean collection was established in 1973 at the International Center of Tropical
Agriculture (CIAT) near Palmira in Colombia. It shows the impact of the collection on plant breeding and in agricultural
development through the distribution of germplasm to the center’s bean breeding program, to successively find resistances
to pests and diseases, adaptation to low phosphorus and drought, and more recently higher content of iron and zinc in seeds.
The collection was also used to progress knowledge in biological sciences, as shown by a dozen of examples. A reason behind
these successes was foresight and focus on diversity per se in the collection. The paper ends with a number of suggestions for
the way ahead for the genetic resources conservation and management of these bean crops, and possible take-home lessons
for curators in charge of other similar collections.
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The purpose for establishing a collection of
genetic resources at CIAT

Created in 1967, the International Center of Tropical
Agriculture (CIAT for its Spanish acronym) was the
third international center of agricultural research whose
mandate was to increase the agricultural productivity
in the tropics. Because of population growth a sure
food availability crisis was anticipated and yields of
key staple crops had to increase (Kastner et al, 2012)
and, fortunately, this actually happened, namely in
Asia (Evenson and Gollin, 2003). Although CIAT was
originally designed to improve agricultural systems in
the lowland tropics (the Center had a couple of animal
production programs), it became clear that the level of
human talents, physical and financial resources required
for such a task was beyond the donors’ capacity and
time frame, and these limits indicated to re-focus
instead (Lynam and Byerlee, 2017). After the successful
experience of the International Rice Research Institute
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(IRRI) in Los Baños, Philippines, on rice and that of the
Centro Internacional para el Mejoramiento del Máız y
Trigo (CIMMYT) in El Batán, Mexico, on wheat, and as
an outcome of international conferences (Hernández-
Bravo, 1973; Rachie, 1973; Voysest-Voysest, 1983),
CIAT moved from a Food Legumes Production Systems
Program into a program focused on common bean,
Phaseolus vulgaris L. (Hidalgo, 1991); the Bean Program
initiated in January 1974 (Voysest-Voysest, 2000).

Given the production problems faced for this
crop (Hernández-Bravo, 1973; Singh, 1992), very often
managed by small-holder farmers with limited access
to inputs (Broughton et al, 2003), the next strategic
decision was to increase productivity by transferring
resistance to diseases and pests into target varieties.
By then, the most severe diseases, out of more than
one hundred affecting the crop (Zaumeyer and Thomas,
1957; Singh, 1999), often caused a 70-100% loss in
yield (Sanders and Schwartz, 1980; Singh, 1999). The
first cycle of breeding (which took about 8-10 years in
beans in the 1960s) aimed at securing the potential yield
of the landraces (Rachie, 1973). Thus, farmers would
have a secure food stock at home and a surplus for
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Figure 1. Evolution of the breeding strategy in bush common
bean in the tropics over the last decades.

sale in local markets. This strategy was likely to work
because in subsistence agriculture beans were planted
in mixtures to where resistant genotypes would lower
the disease pressure for the total crop (Clawson, 1985),
and in market-oriented agriculture with fewer genotypes
under cultivation a higher part of the production would
be saved for sale.

It was envisioned to tackle the next most limiting
factor to productivity in a cumulative way, through the
production and distribution of elite varieties, with the
active participation of the national partners, who then
would work with extension services for the diffusion
of such a technological package. That participation was
critical for impact, given the high number and regional
variation of commercial seed types (Voysest-Voysest,
1983; Voysest and Dessert, 1991). Figure 1 shows how
this strategic approach has worked for common bean
over five decades. With each breeding cycle tackling
a new challenge, the strategy had to be cumulative,
because the entire production chain and the final users
would hardly accept to go backwards. In this regard,
it is worth noting that after fifty years, diseases and
pests continue to be among the highest priorities of bean
breeding, especially in Africa (Assefa et al, 2019).

While the first breeding cycle was under way,
improvements were introduced to agronomical prac-
tices, taking into account planting density, plant-
ing date versus water availability versus solar radi-
ation/photoperiod, minimum of nitrogen-phosphorus-
potassium fertilization, or pH correction by lime applica-
tion (Thung, 1991). Once these improved agronomical
practices were implemented, it was clear that progress in
yield had to come from plant breeding (Borlaug, 1983),
but there was a critically important assumption for
the whole strategy to work: the immediate availability
of well characterized and evaluated genetic resources,
which would be the ultimate source of all desirable
genes. Practically, because there were none at the Cen-
ter, this meant assembling large collections of genetic
resources of beans and evaluating such collections by
multidisciplinary teams. In the early years of CIAT, that
assumption had to quickly become reality for the effi-

ciency and impact of the breeding efforts. The need for
multiple sources for disease and pest resistance and abi-
otic stress tolerance was also related to the wide diver-
sity of conditions of deployment in the many countries
benefiting from that technology. Note that apart from
assembling collections, it was also the time of setting the
founding principles of genebank management (Allard,
1970; Frankel and Hawkes, 1975).

How the Phaseolus collection was
assembled

With the establishment of the CIAT Bean Program, the
first introductions of bean collections from other insti-
tutes (e.g. United States Department of Agriculture
[USDA], Pullman, USA; Instituto Nacional de Investi-
gación Agŕıcola, Chapingo, Mexico; Instituto de Ciencias
y Tecnoloǵıa Agŕıcola, Chimaltenango, Guatemala; Cen-
tro Agronómico Tropical de Investigación y Enseñanza
[CATIE], Turrialba, Costa Rica) (Hernández-Xolocotzi,
1973; Vieira, 1973) were made thanks to the constant
cooperation of the Instituto Colombiano Agropecuario,
Palmira, Colombia on plant quarantine matters (Fig-
ure 2). Accessions were registered as Germplasm num-
bers (e.g. G4017 for ‘Carioca’, perhaps the most planted
bean variety in the world; Voysest-Voysest (2000).
Thanks to the support of the International Board for
Plant Genetic Resources (IBPGR), Rome, Italy (estab-
lished in 1974), several collecting missions were orga-
nized for landraces and wild species. Before the entry
into force of the Convention on Biological Diversity
(CBD), these crop genetic resources were considered
as common heritage of humankind, and there was free
exchange of genetic resources for breeding and agricul-
tural research purposes. After December 1993, acquisi-
tion by introduction of copies of germplasm collections
and explorations came to a halt (as experienced in other
genebanks of the Consultative Group on International
Agricultural Research (CGIAR); Halewood et al (2020).
But in recent years, target explorations were carried
out under the legal framework set by the International
Treaty on Plant Genetic Resources for Food and Agricul-
ture (FAO, 2002), for example in Costa Rica.

Because beans as a staple are often associated with
maize, collections of bean germplasm have been estab-
lished across the tropics and subtropics, particularly in
Latin America (e.g. in Chapingo in Mexico, Medelĺın in

Figure 2. Increase in size of the bean collection introduced into
the CIAT genebank.
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Colombia or Campinas in Brazil) (Vieira, 1973), which
could be introduced into CIAT. It was not rare for a
maize breeder to pick up seeds of local bean landraces
when visiting a farmer or a local market and give them
to colleagues in charge of bean breeding. As a gen-
eral practice in Latin America the maintenance of bean
germplasm collections was a side activity of the bean
breeders. Given this kind of attention, it is no surprise
that the landraces of the market classes worked on
by the breeders were well represented in the respec-
tive collections. Retrospectively, this is positive because
some of these collections were made in the 1940-1960s,
just before massive rural transportation blurred the ori-
gins of many local landraces. By that time, the vari-
eties selected or bred over the last decade were starting
to replace many landraces. This replacement was seen
in small black and red-seeded bean varieties of Central
America. Consequently, the most original genetic vari-
ation in landraces that existed in the 1940s is by now
either in genebanks or lost. Collecting today will only
result in duplicates or in samples of bred materials.

The focus on common bean and the need to find
resistances for several market classes of beans as
final targets influenced the makeup of the collection
(Table 1). As the Bean Program was working with
Central American countries and Brazil (Voysest-Voysest,
1983), many small-seeded collections were introduced,
but because CIAT also worked together with Andean
countries, large-seeded collections were included as
well (both collections but particularly the last ones
were important for Africa: Martin and Adams (1987).
Cultivated P. vulgaris makes up the biggest part of the
collection, the other cultivated species follow, with a
total of 32,183 landraces and 2,797 improved varieties.
The wild forms of the cultivated species and the
wild species are represented by over 2,000 accessions
(Table 1).

The number of country depositors is 110. The top
five countries that have contributed most are: Mexico
(6,237 accessions), Colombia (3,927 accessions), Peru
(3,798 accessions), Guatemala (2,853 accessions) and
the United States (1,863 accessions), followed by
Brazil, Ecuador, Turkey, Malawi and Costa Rica (with
around 1,000 accessions each). Restoration of national
bean diversity has been done for Bhutan, Chile, Costa
Rica, India, Iran, and Mexico, based on institutional
agreements.

After partial safety duplications at CATIE and
Centro Nacional de Pesquisa de Recursos Genéticos e
Biotecnologia, Brasilia, it was decided in 1996 to make
a complete backup at CIMMYT because extra space was
kindly offered by Bent Skovmand then in charge of
the wheat collection. This included a check for viability
and absence of diseases of quarantine importance. By
2019, 92% of the bean collection had been safely
duplicated at CIMMYT. When the Global Svalbard Seed
Vault (GSSV, Longyearbyen, Norway) was opened in
February 2008 (Fowler, 2016), a second safety backup
was implemented there. By 2019, 94% of the bean

Table 1. Accessions of the in-trust Phaseolus collection kept at
CIAT Palmira (information also available in Genesys: https://
www.genesys-pgr.org/a/overview/v2ZW8lQwlep)

Species Biological status No.
accessions

P. vulgaris,
common bean

cultivated (landraces,
commercial varieties)

30,571

wild and weedy forms 1,804

P. lunatus,
Lima bean

cultivated (landraces,
commercial varieties)

3,031

wild and weedy forms 274

P. coccineus,
scarlet runner

cultivated (landraces,
commercial varieties)

760

wild and weedy forms 198

P. dumosus,
year-bean

cultivated (landraces) 475
wild and weedy forms 15

P. acutifolius,
tepary

cultivated (landraces,
commercial varieties)

161

wild and weedy forms 165
Other species
(411)

wild forms only 484

1 This figure represents half of the number of species of the
genus (Debouck, 2021).

collection was safely duplicated at GSSV. In addition,
CIAT safeguards in its vault the seed backups of the
food legume collection of the International Institute of
Tropical Agriculture (IITA), Ibadan, Nigeria, and the
tropical forage legumes of the International Livestock
Research Institute (ILRI), Addis Ababa, Ethiopia.

The diversity in the bean collection and its
use

Given the breeding priorities (Figure 1), the bean collec-
tions were evaluated by multidisciplinary teams in mul-
tiple locations in Colombia, first in Palmira, in Quilichao
since 1977 and in Popayán since 1978 (Cuellar, 2003).
Resistances to several highly damaging diseases (e.g.
anthracnose, angular leaf spot (ALS), bean common
mosaic virus (BCMV), rust) were found (Table 2)
and transferred as their mode of inheritance was pro-
gressively defined (Singh, 1992; Beebe et al, 1997;
Beebe, 2012). However, bean breeders soon realized
that further genetic progress would be obtained only
by screening the diversity outside the respective market
classes, and that for many traits (e.g. Ascochyta blight,
bean golden mosaic virus (BGMV), bean golden yellow
mosaic virus (BGYMV), common bacterial blight, halo
blight, web blight, white mold, bruchids and leafhop-
pers) there were very few or no sources of workable
resistance (Miklas et al, 2006; Singh and Schwartz,
2010; Beebe, 2012). In a copy of the USDA collection
there were a few accessions of wild common bean from
Mexico collected in the 1960s by Howard Scott Gen-
try in which, later on, César Cardona and his team
found bruchid resistance associated with a particular
seed protein (Osborn et al, 1988). The screening for
the right variants of that protein by electrophoresis

https://www.genesys-pgr.org/a/overview/v2ZW8lQwlep
https://www.genesys-pgr.org/a/overview/v2ZW8lQwlep
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opened the way for marker assisted selection (Kelly and
Miklas, 1999), widely applied in breeding for BGYMV
resistance (Broughton et al, 2003), anthracnose resis-
tance (Kelly, 2004) and other traits. The wide sec-
ondary gene pool (e.g. P. coccineus, P. costaricensis, P.
dumosus) has just started to be evaluated, and has
already shown promise against Ascochyta blight (Schmit
and Baudoin, 1992), angular leaf spot (Mahuku et al,
2003) and white mold (Singh et al, 2013). Such resis-
tances were expected because the species of the sec-
tion Phaseoli thrive in montane humid forests (Debouck,
2000) where these fungi diseases are frequent selec-
tion pressures (Cattan-Toupance et al, 1998) and have
likely been present over hundreds of thousands of years,
given the age of these species (approximately 1 million
years) (Delgado-Salinas et al, 2006; Rendón-Anaya et al,
2017).

Once disease resistances were transferred to the pre-
ferred varieties in the different market classes, yield
came as the next challenge, in order to keep bean as a
competitive (mono-)crop as compared to soybean, cow-
pea or sorghum. An early approach, in line with the
spirit of the Green Revolution in wheat (Donald, 1968),
was to optimize the ideotype under favorable environ-
ments (Adams, 1973). That breeding effort on plant
architecture continued (Kelly, 2001), although with lim-
ited success in the tropics (Beebe, 2012). An impor-
tant outcome, however, has been the rise of growth
habit 2 or bush erect indeterminate (race 3 of Evans
(1973) for mechanical harvesting in bean improved
germplasm, little present in traditional landraces of
Latin America. This also offered opportunities to enrich
the collection (Hidalgo et al, 1992). Another breed-
ing goal was to combine the productivity of the small-
seeded varieties with the grain size of the large-seeded
ones, many of them demonstrated to be of Mesoamer-
ican and Andean origin, respectively (Evans, 1976).
Thus came the works evidencing the two major gene
pools (Gepts et al, 1986; Singh et al, 1991b; Kwak
and Gepts, 2009; Bitocchi et al, 2013), and the races
within them (Singh et al, 1991a; Beebe et al, 2000b;
Blair et al, 2007, 2012). The presence of races was a
bit unexpected in an autogamous crop but could be
explained by the role of outcrossing during early domes-
tication (Chacón-Sánchez et al, 2021). Some genetic iso-
lation and poor recombination have been shown to exist
between the two major genepools (Singh and Gutiérrez,
1984) and since the wild state (Koinange and Gepts,
1992). But significant heterosis was demonstrated to
exist (Nienhuis and Singh, 1986; Bannerot, 1989), espe-
cially between races (Singh et al, 1993; Singh and
Urrea, 1995), while genetic disorders between races
were sometimes observed (Singh and Molina, 1996).
The significant interactions with the environment, how-
ever, have resulted in a narrow commercial applica-
bility of this approach (Gutiérrez and Singh, 1985;
Nienhuis and Singh, 1986). Another strategy inspired
from the quantitative developments in tomato breed-
ing (Tanksley et al, 1996) was the advanced back-

cross QTL analysis using a wild form. The accessions of
wild P. vulgaris G12947 (Acosta-Gallegos et al, 2007),
G19892 (Buend́ıa et al, 2003), G24404 (Blair et al,
2006) and G24423 (Kelly, 2004) were found to con-
tribute a significant QTL for yield (a 27% increase as
compared to the recurrent parent in the last example).
In some cases, the use of weedy types would help reduce
the number of backcrosses needed to recover the appro-
priate seed size (Acosta-Gallegos et al, 2007). Another
innovative approach has been the use of lines coming
from crosses with the year-bean (for transfer of high iron
in the grain) or with tepary (for transfer of bacterial
blight resistance) in order to bring more monocarpism
into common bean (Klaedtke et al, 2012; Mej́ıa-Jiménez
et al, 1994). The bean crop with exceptions in growth
habits 1 and 2 still has the ancestral trait of continuing
shoot production and lateral flowering, while the first
pods already enter into maturity. In the wild it makes
all sense, but not in a crop aimed at mechanical har-
vesting. The desert ephemerals of the genus such as P.
acutifolius A. Gray, P. filiformis Benth, or P. microcar-
pus Mart. (Freytag and Debouck, 2002) invest much less
in profuse branching but soon move all photosynthesis
products into their seeds. Thus, under heat or drought
stress, it makes sense to quickly redirect such products
to the only part that will be harvested (Rao et al, 2013;
Suárez et al, 2020).

One outcome of the increase in size of the collection
and the first phase of germplasm evaluations at CIAT
was the establishment of core collections (along the
concept introduced by Frankel and Brown (1984). The
CIAT common bean core collection was established
by use of Geographic Information Systems maximizing
the environmental diversity of landraces, and a few
morpho-agronomic descriptors (Tohme et al, 1995a).
The core collection, consisting of 1,556 accessions,
has been used for the identification of germplasm
tolerant to low phosphorus (Beebe, 1997) or containing
high levels of micronutrients (Islam et al, 2002). For
both traits less than 10% of the total collection had
been evaluated at that time (Beebe et al, 2000b,a),
explaining the recourse to the core collection. Using
core collections was, in part, the consequence of internal
duplication or redundancy in general collections, which
for cultivated common bean has been estimated at
50% across the major genebanks (Lyman, 1984). This
figure is perhaps on the high side but reflects the
amount of commercial and breeding materials kept
in genebanks as compared to primary sources of
variation (landraces, wild species). As mentioned, the
management of germplasm collections was often a
side activity of bean breeders who would hesitate to
eliminate all variants close to the target market class.
Given the cost of keeping accessions versus the cost of
tracking down internal copies (this was then achieved
by multi-site characterization, in addition to passport
data) (Koo et al, 2004), the problem was not given
high priority in the past. With the development of SNP
genotyping technology, this issue should be revisited,
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Table 2. Bean accessions from the CIAT collection used as sources of resistance to diseases and pests.

Trait Material used References

Diseases
angular leaf spot G10613 from Guatemala Pastor-Corrales et al (1998)

interspecific hybrids with P. coccineus; G4691 Pastor-Corrales et al (1998); Islam et al
(2002); Mahuku et al (2003)

angular leaf spot and
anthracnose

G3991 from Costa Rica Schwartz et al (1982)

anthracnose Aliya G02333 Young and Kelly (1996)
Kaboon G1588; Cornell 49-242 G5694 Melotto and Kelly (2000)
interspecific hybrids with P. coccineus G35252 Mahuku et al (2002)

Ascochyta blight P. dumosus G35369 from Costa Rica Schmit and Baudoin (1992)
P. dumosus G35182 from Guatemala Garzón et al (2011)

bacterial wilt wild P. vulgaris G12883 from Mexico Urrea and Harveson (2014)
Bean Golden Yellow
Mosaic Virus (BGYMV)

P. coccineus G35172 from Rwanda Beaver et al (2005)

Bean Common Mosaic
Virus (BCMV)

Porillo Sintético G04495, Royal Red G04450 Singh et al (2000)

beet curly top virus California Pink G06222, Red Mexican G05507 Larsen and Miklas (2004)
Porillo Sintético G04495, Burtner, Tio Canela 75 Singh and Schwartz (2010)

common bacterial
blight

interspecific hybrids with acutifolius VAX4, MBE7 Zapata et al (1985); Singh and Muñoz
(1999); Michaels et al (2006); Navabi et al
(2012)

Montana No. 5; PI 207262 Miklas et al (2003, 2006)
halo blight Montcalm G06416, ICA Tundama G14016 Beaver (1999)

Palomo G12669 Schwartz (1989)
Pinto US 14 G18105 Singh and Schwartz (2010)
Wis HBR 72 G03954 Taylor et al (1996)

Fusarium root rot Porillo Sintético G04495; wild P. vulgaris G12947 Beebe et al (1981); Acosta-Gallegos et al
(2007)

Pythium root rot PI 311987 G02323 Beebe et al (1981)
Rhizoctonia solani rot N203 G00881 Beebe et al (1981)
rust Compuesto Negro Chimaltenango G05711 Stavely (1984)

Ecuador 299 G05653 Stavely and Pastor-Corrales (1989)
Redlands Pioneer G05747 Liebenberg et al (2006)
PI 260418 Singh and Schwartz (2010)

web blight BAT 93; Flor de Mayo G14241 Beaver et al (2002)
white mold P. coccineus PI 175829 from Turkey Abawi et al (1978)

P. dumosus PI 417603 from Mexico Hunter et al (1982)
interspecific hybrids with P. coccineus G35172 Singh et al (2009)
interspecific hybrids with P. costaricensis G40604 Singh et al (2013)

Pests
Acanthoscelides weevil wild P. vulgaris from western Mexico G12952; QUES van Schoonhoven et al (1983); Zaugg et al

(2013)
Apion godmani pod
weevil

Amarillo 154 G03982; G03578 Beebe et al (1993); Garza et al (2001)

Empoasca leafhoppers Turrialba 1 G03712 Galwey (1983)
California Dark Red Kidney, from USA G17638 Schaafsma et al (1998)

Ophiomyia bean fly P. coccineus G35023 and G35075, and interspecific
hybrids

Kornegay and Cardona (1991)

whiteflies Aleyrodidae DOR 303 Blair and Beaver (1992)
Zabrotes weevil wild P. vulgaris from Chiapas, Mexico G24582 Acosta-Gallegos et al (1998)
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with the merging of near identical accessions and the
review of the core collection (as already suggested for
the USDA core collection by Kuzay et al (2020). The
most significant costs ahead are likely to be about
regeneration and evaluation, not the chasing of internal
copies helped by robotics!

Distribution of the bean collection

Since being established in August 1977 as an inter-
nal service unit (Hidalgo, 1991), the genebank has
distributed to the Bean Program and the Biotechnol-
ogy Research Unit of CIAT a total of 318,148 samples
(or 69.4 % of the total distributed) (Figure 3). Exter-
nally, the genebank has distributed 140,109 samples (or
30.6% of the total) to users in 105 countries. The total
distributed was 458,257 samples of 37,657 accessions,
or 99% of the bean collection. These figures indicate
that: i) the collection has been studied and used ini-
tially by the scientists of CIAT, ii) the number of coun-
tries benefiting from the conservation work through dis-
tribution almost matches with the number of country
depositors, and iii) the collection has been distributed
almost entirely (this percentage could be even higher
since some accessions have not been distributed due
to lack of seeds). One should note that apart from
CIAT programs, the most important users were national
agricultural research services, universities and research
institutes. The shares of farmers, commercial companies
and non-governmental organizations in the distribution
were low in comparison. Assuming farmers are aware of
the existence of germplasm collections, reasons for the
low number of requests might be related to the farmers’
access to on-line request processes (mail requests were
honored), as well as the capacity to deal with phytosan-
itary regulations in the respective countries. As dry bean
breeding has been mostly carried out by public institu-
tions, requests of genetic diversity by the private sec-
tor were few, often related to specific sources of varia-
tion for snap bean breeding (e.g. sources of resistance to
anthracnose).

The purposes of distribution have generally followed
the breeding priorities shown in Figure 1: interest in
resistances to diseases and pests, nutritional quality
and more recently tolerance to abiotic stresses such
as drought and high temperature. As discussed below
and shown in Figure 4, a significant part of the
distribution has been for the purpose of advancing
knowledge. In Figure 4, breeding activities (38.9%)
and applied research (e.g. in pathology or entomology:
37.1%) were the top purposes for seed requests,
followed by agronomy (11.7%) and basic research
(e.g. in genetics or evolutionary studies: 9.6%). The
variation in number of distributed samples from one
year to another can be significant, namely if the core
collection with over 1,500 accessions was requested
and sent. The peak in distribution in the period 1978-
1996 practically matches with that of the activities of
CIAT Bean Program (Voysest-Voysest, 2000). For the
period 1973-2019, the top five recipient countries were:

USA (26,093 samples), Colombia (18,444 samples),
Brazil (9,198 samples), Guatemala (7,430 samples) and
Mexico (6,787 samples). The term ‘samples’ is preferred
over ‘accessions’ as a country recipient could ask for a
specific accession more than once.

Apart from germplasm, the genebank also distributed
information related to the in-trust collections. An
indicator of this service is given by the number of
consultations of the genebank website (https://ciat.cgia
r.org/what-we-do/crop-conservation-and-use/) to have
access to data (Figure 5).

Statistics about access to genebank information and
services in recent years show that most of the visi-
tors (81%) reach the genebank website directly, indi-
cating a user knowledge and confidence that relevant
information can be found there, while 19% of visi-
tors find the website through a browser search or are
referred to it through another link. Users also benefit
from specialized technical information currently consist-
ing of 658 documents (including articles, book chapters,
conference proceedings, germplasm exploration reports,
posters and presentations). These documents can be
accessed through the genebank website or the institu-
tional document repository CGSpace (https://cgspace.c
giar.org/handle/10568/35697), that registered 27,278
downloads in 2017-2019.

Impact of the bean genetic resources
collection

The 225 varieties released in 17 countries of Latin
America and the 88 varieties released in 14 countries
of Africa in 1974-1999 by the Bean Program (Voysest-
Voysest, 2000), the check of BGYMV in Central
America (Beebe, 2012), as well as the yield gain from
688 kg/ha to 782 kg/ha in eastern Africa (Lynam
and Byerlee, 2017) eventually have their origin in
the CIAT genebank. Once the interesting traits were
identified (Table 2); (Hidalgo and Beebe, 1997),
through different breeding schemes, elite varieties
were produced, tested and released via international
nurseries such as the International Bean Yield and
Adaptation Nursery (Voysest-Voysest, 1983; Beebe,
2012), generating significant economic and social
benefits (Johnson et al, 2003). In this last work, over the
period of analysis, and because of the varieties involved,
some countries of Latin America and the Caribbean were
net beneficiaries (Argentina, Brazil), while others were
net contributors (Mexico, El Salvador). Overall, and
over the duration, however, it seems that all countries
benefit from conservation and unrestricted international
exchange of germplasm (Johnson et al, 2003).

As an example of changing context over time, the
gene gy. originating from Peru and conferring an intense
and sustained yellow color (Bassett et al, 2002) was used
since 1978 in northwestern Mexico (Lépiz-Ildefonso and
Navarro-Sandoval, 1983), because it gave a premium
price as compared to the fading color in yellow-
seeded traditional landraces. It ended up in the variety
‘Azufrado Peruano 87’ (Voysest-Voysest, 2000) and also

https://ciat.cgiar.org/what-we-do/crop-conservation-and-use/
https://ciat.cgiar.org/what-we-do/crop-conservation-and-use/
https://cgspace.cgiar.org/handle/10568/35697
https://cgspace.cgiar.org/handle/10568/35697


Genetic Resources (2021), 2 (4), 21–43 Impact of a bean collection 27

Figure 3. Number of samples distributed in the period 1973-2019. Important recipients were the Bean and Biotechnology Programs
of CIAT, the national agricultural research services (NARS), universities and research institutes.

an undue patent granting (genetically dissected in great
detail by Pallottini et al (2004). It is because the in-trust
collection was rich in yellow-seeded accessions from
Mexico and Peru, and because the CIAT genebank kept
past records such as old catalogs of varieties (Hedrick,
1931), it was possible to demonstrate ample prior art,
and the patent was turned down in 2008.

Legumes have been called the ’meat of the
poor’ (Heiser, 1990) and in many parts of Latin Amer-
ica (e.g. Brazil, Mexico, Cuba) people with low income
eat beans daily. Similarly, the highest consumption
rates per capita are currently registered in eastern
Africa (OECD, 2015). Given this, it was becoming
evident that improved varieties should also fight the
‘hidden hunger’ or the deficiency in minor minerals
such as iron and zinc where the diet is not sufficiently
diverse. Using the core collection, the evaluation to find
accessions with high iron and zinc was expanded (Islam
et al, 2002), and good sources were identified (G21242,
G23818, G23834) (Blair et al, 2011), primarily from
the Andean region. Nothing on the seed aspect indi-
cates high values in these micronutrients. Likewise,

G14519, an old landrace named ‘Hickman Pole Bean’
from the United States and belonging to the Mesoamer-
ican genepool, also has shown potential (Blair et al,
2010). From the start, the genebank had interest in
assembling variation for any future need, and this is
precisely the wide scope that made biofortification pos-
sible thirty years later and with a lasting impact where
it is today most needed, e.g. in East Africa (Sellitti et al,
2020).

With changing context of bean production over the
last forty years, for example, common bean being
pushed towards the west in the Plains of the USA or
in the Canadian prairie, the northwest in Mexico and
the northeast in Brazil (Singh, 2001), new challenges
like drought, cold, heat or low phosphorus are set
for breeding. Some drought tolerance can be found in
the ‘Durango’ race (Singh, 2007; Beebe et al, 2013),
in other landraces such as G21212 (Beebe et al,
2008) and in wild forms (Cortés and Blair, 2018).
Root architectural and physiological traits identified
in an Andean landrace, G19833, may contribute to
phosphorus acquisition (Beebe et al, 2006).
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Figure 4. Number of samples distributed annually to users in the period 1973-2019, according to the purposes of requests.

Figure 5. Number of consultations of the CIAT genebank
website (https://ciat.cgiar.org/what-we-do/crop-conservation
-and-use/) in the period 2009-2019.

The impact of the bean germplasm collection has
also been through the direct adoption of genebank
accessions by farmers after the screening of international
nurseries. No less than thirty-four accessions have been
registered in national catalogs of varieties in thirty-eight
countries in 1974-1999 (Voysest-Voysest, 2000), or 13%
of the total of improved genetic materials distributed
by CIAT. This figure may not look impressive, but bean
varieties produced by breeding have been released in
the same geographic areas since the 1940s. That said,
it is anticipated that apart from the use of landraces
for specific niche markets (see popping beans below),
for specialized studies for example in pathology (e.g.
disease differential sets) or for servicing gardeners,
a significant coming impact of genetic resources will
materialize through libraries of genetic stocks (van

https://ciat.cgiar.org/what-we-do/crop-conservation-and-use/
https://ciat.cgiar.org/what-we-do/crop-conservation-and-use/
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Treuren and van Hintum, 2014), targeted diversity
panels (Cichy et al, 2015; Moghaddam et al, 2016),
and sequence tagged traits (Lobaton et al, 2018). But
in order to allow the ‘molecular’ breeder to do advanced
searches throughout the collection substantial changes
must be brought to databases (McCouch et al, 2012;
Byrne et al, 2018). Learning from experience, the design
should be for use by non-database experts, modular
and scalable, moving from passport data into accession
traits and ending into annotated genes. Somehow, this
focus re-emphasizes the role of genebanks as keepers
of the primary genetic variation, and perhaps less
of all allelic combinations of that variation (i.e. the
sister lines of simple crosses), since tools now exist to
recombine that variation to better meet human needs or
agricultural contexts (towards precision agriculture for
instance). Appraising that variation by curators might
be difficult (what should be kept in the genebank
remains a cornerstone and recurrent question), although
they will be helped by sequence information. From a
pragmatic perspective genebanks may keep interest in
old landraces since these have been tested over long
durations in farmers’ fields. For similar efficiencies in
breeding, genebanks might be interested in keeping
recombinants between gene pools, for example from
southern Europe (Gioia et al, 2013), part of the
Guarani area in Brazil (Burle et al, 2010) or the
northern Andes (Chacón-Sánchez et al, 2021), especially
if they represent novelties in agronomic or nutritional
attributes.

The other impact: the contribution to
knowledge

The in-trust collections, because of the open access
set forth by FAO in the early years and then the
facilitated access approved by the parties to the
International Treaty (FAO, 2002), have helped increase
knowledge in many fields of biological sciences (Dudnik
et al, 2001). Conversely, the increased knowledge
contributed tremendously to the efficiency of the
breeding and varietal deployment efforts. This was
particularly applicable to the mandate crops of CIAT,
since with the exception of rice, not much basic
biology and genetics was known in the late 1960s
when crop improvement efforts were launched. For
instance, the ancestry of common bean became firmly
established at a time not far away from the founding of
CIAT (Burkart and Brücher, 1953; Gentry, 1969). The
double domestication of common bean became obvious
only in 1986 (Gepts et al, 1986), and that of Lima bean
in 1989 (Debouck et al, 1989), and the existence of a
fifth case of domestication in the genus was clarified as
late as 1991 (Schmit and Debouck, 1991)!

Such increased knowledge also helped to better
define what should be conserved in genebanks; for
example, studies on the founder effect due to bean
domestications have stressed the importance of wild
forms for accessing the total genetic diversity of three
bean crops (Sonnante et al, 1994; Mart́ınez-Castillo

et al, 2015; Mina-Vargas et al, 2016). As expected,
that founder effect was less marked in the scarlet
runner (Guerra-Garćıa et al, 2017). That knowledge
also helped in the development of disease indexing
methods for the safe movement of germplasm (Kumar
et al, 2021). Some examples are provided in Table 3
(by tracking accessions distributed in 1973-2019). The
breadth of disciplines, evidenced by the diversity of
peer-reviewed journal titles and linked to genebank
accessions, is striking but just reflecting the diversity of
the collection. No less important are the opportunities
of scientific collaborations around ‘problems’ set up
by the bean crops and materials provided by the
genebank, as reflected by the institutions and countries
of authorships.

Knowledge often overlooked, although
associated with crop germplasm for

millennia

Because germplasm collections were assembled at
CIAT primarily in relation to breeding, traditional
knowledge associated with specific accessions was rarely
documented. As the first phase of breeding was focused
on resistance to diseases and pests, with systematic
inoculation of known strains, there were often no
incentives for a time-consuming effort to document
vernacular names, culinary and other folk practices.
One such example is that of popping beans consumed
toasted (National Research Council, 1989). That group
of landraces still exists in the Andes, from Cajamarca
in Peru down to Chuquisaca in Bolivia (Tohme et al,
1995b). Elder farmers in the countryside will tell which
variety can pop, while migrants to urban areas one
generation after will simply process them all in water
cooking, even with a slight increase in digestibility (van
Beem et al, 1992). Documenting this property by
the genebank is doubly important. First, consumer
preferences change over time (Voysest-Voysest, 2000)
and, in contrast to the 1960s, there is a renewed interest
nowadays in local gastronomy that can provide a better
income to mountain farmers (Zimmerer, 1992). Second,
water and fossil energy might become expensive inputs
to food processing or transportation, as it is still the case
in many parts of rural eastern Africa. In pre-ceramic
times in the Andes, these two inputs (excepting fire)
were either difficult to carry or to access. Producing
a hot surface with the help of solar energy might not
be an excessively difficult or expensive technology to
implement in the Andes or in eastern Africa. In altitude,
this kind of germplasm and the unique way to make
it ready for human consumption may also contribute
to reduce deforestation for fuel wood, while montane
forests usually occupy a small acreage (National
Research Council, 1989). Finally, it is worth noting that
this group has a high number of phaseolin types (Tohme
et al, 1995b), indicating a high diversity in contrast to
other Andean landraces (Beebe et al, 2001). Evaluation
of popping beans is continuing in Peru (Cruz-Balarezo
et al, 2009) and Colombia (Otálora et al, 2006), while
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Table 3. Examples of impact of CIAT bean in-trust collection for the advance of knowledge.

Field Output, problem solved References

Botany new species described Salcedo-Castaño et al (2011)
Plant taxonomy taxonomic status of bean species re-assessed Schmit et al (1996)

review of the genus and species Freytag and Debouck (2002)
Agricultural botany founder effect of bean domestication Schinkel and Gepts (1988)

definition of a 3rd gene pool in Lima bean Motta-Aldana et al (2010)
fifth case of domestication in the genus Schmit and Debouck (1991)

Crop evolution recombination between gene pools Gioia et al (2013)
Phylogeography past trans-isthmic migrations of wild bean Chacón-Sánchez et al (2007)
Plant breeding gene pools/ races of common bean defined Singh et al (1991a)
Plant pathology inheritance of ANT/ALS resistance genes Gonçalves-Vidigal et al (2011)

coevolution of ALS in bean gene pools Guzmán et al (1995)
Plant virology resistance to Clover yellow vein virus Hart and Griffiths (2014)
Entomology resistance to bean bruchids Cardona et al (1990)

resistance to bean weevil Kamfwa et al (2018)
Plant genetics common bean genomic map Schmutz et al (2014)

common bean genome history & evolution Rendón-Anaya et al (2017)
inheritance of pod dehiscence Parker et al (2020)
inheritance of leaf mutation Garrido et al (1991)

Plant biotechnology genetic transformation in tepary bean Dillen et al (1997)
Plant physiology flowering response to daylength White and Laing (1989)

identification of phosphorus-efficient genotypes Beebe et al (1997)
low phosphorus tolerance in bean Rao (2001)
variation in photosynthetic activity Lynch et al (1992)

Plant root physiology tolerance to NaCl salinity in early growth Bayuelo-Jiménez et al (2002)
Plant microbiology coevolution of Rhizobium etli Aguilar et al (2004)
Human nutrition content in micronutrients such as iron Beebe et al (2000a)

phaseolin type and digestibility Montoya et al (2008)
Archaeology crop domestication and ancient diet Piperno and Dillehay (2008)
Intellectual Property Protection rebuttal of an undue crop utility patent Pallottini et al (2004)

the inheritance of the trait is being investigated (Campa
et al, 2011; Yuste-Lisbona et al, 2012).

Serving the breeders community and
beyond

As shown in Figure 3 and Table 3, distribution has
been significant to a high diversity of users, going
beyond CIAT breeding activities in Colombia and in
eastern Africa. The trend that in some countries
dry bean consumption is declining (Khoury et al,
2014) (contradictory to health and global environment
benefits: Foyer et al (2016) may mean fewer requests
for that kind of germplasm but an increased interest into
snap bean, often of Andean origin (Myers and Baggett,
1999). With the development of urban gardening, snap
bean might be on the rise, either through the planting
of old heirloom varieties (Kaplan and Kaplan, 1992;
Zeven, 1997) or new ones. In CIAT, the priority was on
dry bean, little on snap bean for the tropics, but with
possibilities of using a wide range of resistance sources
developed for the former commodity (Silbernagel et al,
1991). The changing fate of the popping beans, even

in countries of origin over the last forty years, shows
the ever-changing nature of markets. Thus, examples of
unpredictability abound, indicating for the genebank to
focus on diversity per se, independently from immediate
and local interests.

This example of success brings a strong message
to focus scarce resources, at a time when there
is risk of repeating previous work because many
disciplinary continuums have been broken. Thus, it
seems of paramount importance to document at
accession level what is already known: phaseolin type,
alleles of allozyme, RAPD markers, SCARs, SSRs, also
evaluation data (trait, location, strain as applicable).
Individual accessions should be linked with references
and supporting documents. Keeping in mind that one
third of the collection has not been evaluated, there
is still a lot of work for pathologists, entomologists
and virologists. Evaluations were done on up to 23,000
accessions only for anthracnose, angular leaf spot and
common bacterial blight; for the other limiting pests
the figures are much lower (Hidalgo and Beebe, 1997).
The reaction should be reported at each accession level,
and not restricted to the best performers. Evaluation
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should obviously capitalize on knowledge generated by
previous protocols. For example, on bruchids, it is likely
that evaluation of the rest of cultivated common bean
germplasm will lead to nowhere (van Schoonhoven
and Cardona, 1982), because domestication occurred
elsewhere (Chacón-Sánchez et al, 2005; Bitocchi et al,
2013; Kwak et al, 2009). But the right arcelin can
be picked by screening for the protein or the gene(s)
involved instead of testing thousands of accessions in
contact with the insects.

From previous experience, it seems likely that
genebanks will face periodic shortages in skilled,
highly specialized staff (a challenge also mentioned
by Fu (2017). This is a recurrent limitation for
germplasm evaluation (thus resulting in limited use
of the collection in the future). Sending the core
collection or more accessions abroad for specialized
evaluations is an option, although perhaps not as fast
as having it evaluated by a multidisciplinary team as
done at CIAT in the 1970s. Incidentally, blocks of
resistance genes (Gonçalves-Vidigal et al, 2020) that
can be traced by molecular markers are giving an
unexpected support to that approach. But in view
of complex traits such as heat or drought tolerance,
for which just a fraction of the entire collection has
been evaluated, multi site evaluation of thousands
of accessions seems extremely time-consuming and
expensive. New evaluation schemes have to be designed
and are a true challenge at the organ level (Zhao et al,
2019), but not impossible when focused for example on
pulvini-caused movements of leaflets in relation to solar
radiation avoidance (Thomas et al, 1983).

For location-related abiotic stresses, geographical
approaches (targeted towards the surviving germplasm
where the stress has been present for thousands of
years, and thus logically the wild forms) may help.
But these GIS approaches did not pick up outstanding
wild forms under low phosphorus stress (eighteen
accessions tested, Beebe et al (1997), while there
seems some promise for drought tolerance (eighty-six
accessions tested, Cortés and Blair (2018). Internally,
these approaches requires the genebank to be strict
on passport data accuracy (van Hintum et al, 2011).
However, this is not always possible; for example,
accession G40001 with promise for heat tolerance is
from a market in Veracruz (Suárez et al, 2020). Given
some intrinsic limitations of common bean, coming heat
and drought stress in the tropics and subtropics (Battisti
and Naylor, 2009; Beebe et al, 2011) may be the
opportunity to re-balance the collection towards the
tepary and Lima bean, more hardy crops in this
regard (Freeman, 1913; Rachie, 1973), respectively).
Eventually, bean breeders may realize that they have five
crops instead of one, each one with a different ecological
head start (Debouck, 1992). With the advances in
marker assisted selection and genetic maps, it might be
faster to correct a shortcoming in seed or growth habit in
tepary than expecting the common bean to fully change
its ecological background.

Discussion

The afore-mentioned facts suggest the following points
for discussion. First, one can ask whether this bean
germplasm collection meets the expectations for which
it was established. Many sources of disease resistance
were found (Table 2), and one should note that in
many cases the findings were unpredicted, and largely
independent of geographic origin or gene pool. As well
noted by Harlan (1978), page 351) “resistance is where
you find it”. For those diseases where no good sources
of resistance have been found, in the light of a similar
experience with the USDA collection (e.g. the case of
white mold: Schwartz and Singh (2013), it seems more
a deficiency of the common bean crop species itself than
a severe lack of representativeness. Thus, the breeders
turned logically to the wild forms and the secondary
gene pools (Debouck, 1999), where the collection
provided some solutions but also means for the needed
preliminary studies in taxonomy and wide crossing. This
links with a second point: given the above evidence
of return on investment and incompleteness of the
task (Hidalgo and Beebe, 1997), it might be important
to continue with evaluation, namely for abiotic stresses
such as drought or heat caused by global warming, as
these will impact on yield (Lobell and Gourdji, 2012;
Beebe et al, 2013). In view of the numbers of accessions
and facing the need for developing novel evaluation
schemes for abiotic stresses including a network of
well characterized (climate, soil) experimental plots,
it might be cost effective to cooperate with other
bean germplasm repositories (e.g. Instituto Nacional
de Investigaciones Forestales, Agŕıcolas y Pecuarias,
Tepatitlán, Mexico; Institut für Pflanzengenetik und
Kulturpflanzenforschung, Gatersleben, Germany; USDA,
USA). Incidentally, this cooperation might also include
a reciprocative safety backup and the development of a
novel database because it is a shared concern. Third,
to the question whether the genebank has made any
impact, the answer came from bean breeding but also
many actors in the global community. The figures of
germplasm distribution for applied and basic research
(Table 3 and Figure 4) have shown a vibrant research
community worldwide adding value to the collection.
They invite the genebank to a permanent capacity to
respond to requests (because of the ‘on-line shopping
syndrome’) but also to document these impacts.
The question whether the collection will make any
impact in the future should also consider technological
innovations such as transgenesis and gene editing (e.g.
using CRISPR-Cas9) (Doudna and Charpentier, 2014).
These approaches of genetic engineering bring new
light on using diversity, as they have the potential
to add a new function such as herbicide tolerance
or improve an existing one, such as seed protein
quality, beyond the trait offer of the primary gene
pool (Gepts, 2002). Transformation in common bean
has proven to be particularly difficult (Jacobsen, 1999),
and with limited success (Aragão et al, 1998, 2002;
Estrada-Navarrete et al, 2007). Transformation seems
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quite possible in tepary bean (Zambre et al, 2005),
but apparently little exploited for tepary improvement.
The CRISPR technology in soybean aims at editing
genes involved in a biosynthetic pathway for seed oil
quality, for herbicide tolerance, or changing photoperiod
sensitivity (Bandyopadhyay et al, 2020; Xu et al, 2020).
New technologies will continue to appear, but under
currently available evidence and costs they seem likely
to contribute to a wider and/or faster use of the
collection rather than to replace it. Finally, in this
context, in order to continue to meet the broader
expectations of human societies, the genebanks should
fill gaps which were identified early on, in terms
of geography, e.g. the northern Andes: (Hidalgo and
Beebe, 1997; Beebe and Debouck, 2019); or in terms
of biological coverage (Ramı́rez-Villegas et al, 2010,
2020). Wild forms and wild species should thus be better
represented in the collection, with due consideration
to the regeneration capacity and disclosure of the
potential. There are two points here: first, given the
possibilities opened by comparative mapping in the
Phaseoleae (Schmutz et al, 2014; Vlasova et al, 2016;
Garcia et al, 2021; Moghaddam et al, 2021) and by
gene editing (Bhatta and Malla, 2020; Ku and Ha,
2020), it may be time to think beyond direct interspecific
hybridization for the use of alien germplasm. In that
sense, species of clade A that may represent half of
the genus (Delgado-Salinas et al, 2006; Porch et al,
2013; Debouck, 2021) may be opportunities of genes to
imitate and/or to regulate differently instead of genes
to transfer. But given the speed of the technological
development in breeding (Hickey et al, 2019), the
action should be initiated now with the most threatened
habitats (Williams et al, 2007), species (Goettsch
et al, 2021), or unpredictable conditions, or time-
consuming work. This leads to a second point, as
forsaking millenary crops (Mamidi et al, 2011) does
not improve humankind’s food security. The four other
bean crops mean four more opportunities for plant
breeding. Following the diversity criteria prevailing
during the establishment of the common bean collection,
similar efforts should be carried out for these bean
crops. The change experienced by soybean from an
oriental soy sauce in North America in 1767 into
an animal feeding and agro-industrial crop in just
one hundred years (Hymowitz and Bernard, 1991)
is a strong message to not lose options. Along the
concept of a societal insurance provided by crop genetic
resources (Gepts, 2006), keeping more crops alive goes
in line with productive, sustainable and locally adapted
agriculture and, as a consequence, with reducing rural
poverty and increasing appreciation towards indigenous
cultures. More than ever before, genebanks should
continue to be the reserve of all options.

Concluding remarks

Figure 1 presented breeding challenges in Latin America
in a time sequence, which were largely met by use
of genetic resources assembled and evaluated over

the last fifty years. The same germplasm collections
allowed inheritance studies and the improvement of
bean breeding methods, when looking for combining
ability, tolerance to abiotic stress or tagging a resistance.
The coming storms in areas of bean production (e.g.
increased demand due to demography in eastern
Africa, extinction of crop wild relatives in Mesoamerica,
drought in 60% of bean growing areas worldwide) are
resetting the timing to meet all breeding challenges at
once and soon, but they also involve the genebanks
to have the genetic solutions ready on the shelf or
on the screen (or both). The contributions of the
bean collections to advance knowledge on the nature,
structure and evolution of Phaseolus genetic resources
can now help the genebanks to check two extinctions:
the extinction of populations in the wild, and the
extinction of knowledge about cultivated diversity.
Buying time on these two fronts will be difficult
for genebanks, but the continuing improvement of
conservation methods and efficiencies will contribute to
find and enable the human talents for these daunting
tasks. The above history shows many ways forward to
ensure global food security in uncertain times.
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Campa, A., Pañeda, A., Pérez-Vega, E., Giraldez, R., and
Ferreira, J. J. (2011). Mapping and use of seed protein
loci for marker-assisted selection of growth habit
and photoperiod response in Nuña bean (Phaseolus
vulgaris L.). Euphytica 179, 383–391. doi: https://
doi.org/10.1007/s10681-010-0320-y

Cardona, C., Kornegay, J., Posso, C. E., Morales, F., and
Ramı́rez, H. (1990). Comparative value of four arcelin
variants in the development of dry bean lines resistant
to the Mexican bean weevil. Entomol. Exp. Appl 56,
197–206. doi: https://doi.org/10.1111/j.1570-7458.
1990.tb01397.x

Cattan-Toupance, I., Michalakis, Y., and Neema, C.
(1998). Genetic structure of wild bean populations
in their South-Andean centre of origin. Theor. Appl.
Genet 96, 844–851. doi: https://doi.org/10.1007/
s001220050811

Chacón-Sánchez, M. I., Mart́ınez-Castillo, J., Duitama,
J., and Debouck, D. G. (2021). Gene flow in Phaseolus
beans and its role as a plausible driver of ecological
fitness and expansion of cultigens. Front. Ecol.
Evol 9, 1–25. doi: https://doi.org/10.3389/fevo.2021.
618709

Chacón-Sánchez, M. I., Pickersgill, B., and Debouck,
D. G. (2005). Domestication patterns in common
bean (Phaseolus vulgaris L.) and the origin of the
Mesoamerican and Andean cultivated races. Theor.
Appl. Genet 110, 432–444. doi: https://doi.org/10.
1007/s00122-004-1842-2

Chacón-Sánchez, M. I., Pickersgill, B., Debouck, D. G.,
and Salvador-Arias, J. (2007). Phylogeographic
analysis of the chloroplast DNA variation in wild
common bean (Phaseolus vulgaris L.) in the Americas.
Pl. Syst. Evol 266, 175–195. doi: https://doi.org/10.
1007/s00606-007-0536-z

Cichy, K. A., Porch, T. G., Beaver, J. S., Cregan, P.,
Fourie, D., Glahn, R. P., Grusak, M. A., Kamfwa, K.,
Katuuramu, D. N., Mcclean, P., Mndolwa, E., Nchimbi-
Msolla, S., Pastor-Corrales, M. A., and Miklas, P. N.
(2015). A Phaseolus vulgaris diversity panel for

Andean bean improvement. Crop Sci 55, 2149–2160.
doi: https://doi.org/10.2135/cropsci2014.09.0653

Clawson, D. L. (1985). Harvest security and intraspe-
cific diversity in traditional tropical agriculture.
Econ. Bot 39, 56–67. doi: https://doi.org/10.1007/
BF02861175

Cortés, A. J. and Blair, M. W. (2018). Genotyping
by sequencing and genome-environment associations
in wild common bean predict widespread divergent
adaptation to drought. Front. Plant Sci 9, 1–13. doi:
https://doi.org/10.3389/fpls.2018.00128

Cruz-Balarezo, J., Camarena-Mayta, F., Baudoin, J. P.,
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de germoplasma de fŕıjol común Phaseolus vulgaris
L., ed. Hidalgo, R., Rubiano, H., and Toro, O.
(Cali, Colombia: Centro Internacional de Agricultura
Tropical), 450p. url: http://ciat-library.ciat.cgiar.org/
ciat digital/CIAT/books/historical/028.1.pdf

Hunter, J. E., Dickson, M. H., Boettger, M. A., and Cigna,
J. A. (1982). Evaluation of plant introductions of
Phaseolus spp. for resistance to white mold. Plant
Dis 66, 320–322. doi: https://doi.org/10.1094/PD-
66-320

Hymowitz, T. and Bernard, R. L. (1991). Origin
of the soybean and germplasm introduction and
development in North America. In Use of plant
introductions in cultivar development part 1, ed.
Shands, H. L. and Wiesner, L. E. volume 17 of Crop
Science Society of America Special Publication, 147-164.

Islam, F. M. A., Basford, K. E., Jara, C., Redden, R. J.,
and Beebe, S. (2002). Seed compositional and disease
resistance differences among gene pools in cultivated
common bean. Genet. Resources & Crop Evol 49, 285–
293. doi: https://doi.org/10.1023/A:1015510428026

Jacobsen, H. J. (1999). Genetic transformation. In
Common bean improvement in the twenty first-century,
ed. Singh, S., (Dordrecht, The Netherlands: Kluwer
Academic Publishers), 125-132.

https://doi.org/10.1371/journal.pone.0075974
https://doi.org/10.1371/journal.pone.0075974
https://doi.org/10.1002/ppp3.10225
https://doi.org/10.1007/s00122-010-1496-1
https://doi.org/10.1007/s00122-010-1496-1
https://doi.org/10.1371/journal.pone.0235215
https://doi.org/10.1371/journal.pone.0235215
https://doi.org/10.3389/fpls.2017.01891
https://doi.org/10.3389/fpls.2017.01891
https://doi.org/10.4141/cjps85-036
https://doi.org/10.4141/cjps85-036
https://doi.org/10.1094/Phyto-85-600
https://doi.org/10.1094/Phyto-85-600
https://doi.org/10.3390/plants9101296
https://doi.org/10.1111/j.1749-6632.1977.tb34252.x
https://doi.org/10.1111/j.1749-6632.1977.tb34252.x
https://doi.org/10.2135/cropsci2014.03.0263
https://doi.org/10.2135/cropsci2014.03.0263
https://doi.org/10.1038/s41587-019-0152-9
https://doi.org/10.1038/s41587-019-0152-9
http://ciat-library.ciat.cgiar.org/ciat_digital/CIAT/books/historical/028.1.pdf
http://ciat-library.ciat.cgiar.org/ciat_digital/CIAT/books/historical/028.1.pdf
https://doi.org/10.1094/PD-66-320
https://doi.org/10.1094/PD-66-320
https://doi.org/10.1023/A:1015510428026


38 Debouck et al Genetic Resources (2021), 2 (4), 21–43

Johnson, N. L., Pachico, D., and Voysest, O. (2003).
The distribution of benefits from public international
germplasm banks: the case of beans in Latin America.
Agricult. Econ 29, 277–286. doi: https://doi.org/10.
1016/S0169-5150(03)00055-0

Kamfwa, K., Beaver, J. S., Cichy, K. A., and Kelly, J. D.
(2018). QTL mapping of resistance to bean weevil in
common bean. Crop Sci 58, 2370–2378. doi: https:
//doi.org/10.2135/cropsci2018.02.0106

Kaplan, L. and Kaplan, L. N. (1992). Beans of the
Americas. In Chillies to chocolate – Food the Americas
gave the world, ed. Foster, N. and Cordell, L. S.,
(Tucson, Arizona, USA: The University of Arizona
Press), 61-79.

Kastner, T., Ibarrola-Rivas, M. J., Koch, W., and
Nonhebel, S. (2012). Global changes in diets and the
consequences for land requirements for food. Proc.
Natl. Acad. Sci. USA 109, 6868–6872. doi: http://dx.
doi.org/10.1073/pnas.1117054109

Kelly, J. D. (2001). Remaking bean plant architecture
for efficient production. Adv. Agron 71, 109–143. doi:
https://doi.org/10.1016/S0065-2113(01)71013-9

Kelly, J. D. (2004). Advances in common bean
improvement: some case histories with broader
applications. Acta Horticulturae 637, 99–122. doi:
https://doi.org/10.17660/ActaHortic.2004.637.11

Kelly, J. D. and Miklas, P. N. (1999). Marker-assisted
selection. In Common bean improvement in the
twenty-first century, ed. Singh, S. P. (Kluwer Academic
Publishers), 93-123.

Khoury, C. K., Bjorkman, A. D., Dempewolf, H., Ramirez-
Villegas, J., Guarino, L., Jarvis, A., Rieseberg, L. H.,
and Struik, P. C. (2014). Increasing homogeneity
in global food supplies and the implications for food
security. Proc. Natl. Acad. Sci. USA 111, 4001–4006.
doi: https://doi.org/10.1073/pnas.1313490111

Klaedtke, S. M., Cajiao, C., Grajales, M., Polańıa, J.,
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C., Garćıa, R., and Rivera, M. (2013). Can tepary
bean be a model for improvement of drought
resistance in common bean? Afric Crop Sci. J 21,
265–281. url: https://www.ajol.info/index.php/acsj/
article/view/95291

Rao, I. M. (2001). Role of physiology in improving crop
adaptation to abiotic stresses in the tropics: the case
of common bean and tropical forages. In Handbook
of plant and crop physiology, ed. Pessarakli, M., (New
York, USA: Marcel Dekker, Inc). 2 edition.

Rendón-Anaya, M., Montero-Vargas, J. M., Saburido-
Alvarez, S., Vlasova, A., Capella-Gutiérrez, S., Ordaz-
Ortiz, J. J., Aguilar, O. M., Vianello-Brondani, R. P.,
Santalla, M., Delaye, L., Gabaldón, T., Gepts, P.,
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L., Machado, L., Ordoñez, C., Beebe, S., and Rao,
I. M. (2020). Adaptation of common bean lines to
high temperature conditions: genotypic differences in
phenological and agronomic performance. Euphytica
216, 28–47. doi: https://doi.org/10.1007/s10681-
020-2565-4

Tanksley, S. D., Grandillo, S., Fulton, T. M., Zamir, D.,
Eshed, Y., Petiard, V., Lopez, J., and Beck-Bunn, T.
(1996). Advanced backcross QTL analysis in a cross
between an elite processing line of tomato and its wild
relative L. pimpinellifolium. Theor. Appl. Genet 92,
213–224. doi: https://doi.org/10.1007/BF00223378

Taylor, J. D., Teverson, D. M., and Davis, J. H. C. (1996).
Sources of resistance to Pseudomonas syringae pv.
phaseolicola races in Phaseolus vulgaris. Plant Pathol
45, 479–485. doi: https://doi.org/10.1046/j.1365-
3059.1996.d01-148.x

Thomas, C. V., Manshardt, R. M., and Waines, J. G.
(1983). Teparies as a source of useful traits for
improving common beans. Desert Plants 5, 43–48. url:
http://hdl.handle.net/10150/552200

Thung, M. (1991). Bean agronomy in monoculture. In
Common beans: research for crop improvement, ed. van
Schoonhoven, A. and Voysest, O., (Wallingford, UK:
CABI), 737-834.

Tohme, J., Jones, P., Beebe, S., and Iwanaga, M.
(1995a). The combined use of agroecological and
characterization data to establish the CIAT Phaseolus
vulgaris core collection. In Core collection of plant
genetic resources, ed. Hodgkin, T., Brown, A. H. D., van
Hintum, T. J. L., and Morales, E. A. V., (Chichester,
UK: John Wiley and Sons), 95-107.

Tohme, J., Toro-Chica, O., Vargas, J., and Debouck, D. G.
(1995b). Variability in Andean nuña common bean
(Phaseolus vulgaris, Fabaceae). Econ. Bot 49, 78–95.
doi: https://doi.org/10.1007/BF02862280

Urrea, C. A. and Harveson, R. M. (2014). Identification
of sources of bacterial wilt resistance in common bean
(Phaseolus vulgaris). Plant Dis 98, 973–976. doi:
http://dx.doi.org/10.1094/PDIS-04-13-0391-RE

van Beem, J., Kornegay, J., and Lareo, L. (1992). Nutri-
tive value of the nuña popping bean. Econ. Bot 46,
164–170. doi: https://doi.org/10.1007/BF02930631

van Hintum, T., Menting, F., and van Strien, E.
(2011). Quality indicators for passport data in
ex situ genebanks. Plant Genet. Resour. Character.
Utiliz 9, 478–485. doi: https://doi.org/10.1017/
S1479262111000682

van Schoonhoven, A. and Cardona, C. (1982). Low
levels of resistance to the Mexican bean weevil in
dry beans. J. Econ. Entomol 75, 567–569. doi: https:
//doi.org/10.1093/jee/75.4.567

van Schoonhoven, A., Cardona, C., and Valor, J. (1983).
Resistance to the bean weevil and the Mexican bean
weevil (Coleoptera: Bruchidae) in non cultivated
common bean accessions. J. Econ. Entomol 76, 1255–
1259. doi: https://doi.org/10.1093/jee/76.6.1255

van Treuren, R. and van Hintum, T. J. L. (2014).
Next-generation genebanking: plant genetic resources
management and utilization in the sequencing era.
Plant Genet. Resour. Charact. Utiliz 12, 298–307. doi:
https://doi.org/10.1017/S1479262114000082

Vieira, C. (1973). Plant introduction and germplasm of
Phaseolus vulgaris and other food legumes. In Wall,
D., Potentials of field beans and other food legumes
in Latin America, Centro Internacional de Agricultura
Tropical, 239-252.

Vlasova, A., Capella-Gutiérrez, S., Rendón-Anaya, M.,
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