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Abstract: Ethiopian mustard (Brassica carinata A. Braun) shows potential for diverse applications, including as leafy greens,
green manure and oilseed feedstock for biofuels. This study evaluated the seed and oil production potential and phenotypic
diversity of 49 B. carinata accessions through trials conducted in 2018 at the Holeta and Asela Research Centers in
Ethiopia, using a lattice design. Data were collected on phenological, morphological, agronomic and seed quality traits. The
analysis revealed significant variability across most traits, except for silique width and oil and protein content at Asela, and
main raceme length and total glucosinolate content at Holeta. Combined analysis showed significant genotype-by-location
interactions for flowering date, seeds per silique and seed yield per hectare, indicating a strong environmental influence
on these traits. Phenotypic and genotypic correlation analyses identified strong positive correlations between leaf traits and
phenology, seed yield and seed quality, while oil content was negatively associated with protein and glucosinolate content.
Principal component analysis identified five components at Asela and six components at Holeta with eigenvalues greater than
one, explaining over 77% of the total variation at both locations. Key traits such as plant height, seed yield and oil content
contributed significantly to these principal components. Cluster analysis grouped the accessions into three clusters based on
distinct trait combinations. Accessions 17545, 21373, 24203 and 24495 consistently performed well across multiple traits
across sites, making them strong candidates for breeding programmes focused on improving seed yield and quality in B.
carinata.
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Introduction

Brassica carinata A. Braun (Ethiopian mustard, carinata)
(BBCC) known as ‘Gomenzer’ in Amharic, a natural
amphidiploid hybrid between B. nigra (BB) and B.
oleracea (CC), is believed to have originated in the
Ethiopian highlands (Warwick and Black, 1991). It is
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well adapted to these highlands (Prakash and Hinata,
1980; Rakow, 2004) and to a wider range of climatic
conditions (Montemurro et al, 2016). The crop is grown
globally for diverse applications. In the Horn of Africa,
it is primarily utilized as leafy greens and as oilseed for
culinary use (Basili and Rossi, 2018; Hagos et al, 2020),
while in Europe it is employed for green manure and
biofuel production (Cosentino et al, 2008; Montemurro
et al, 2016). In North America, B. carinata is grown for
biofuel and oleochemical applications (Blackshaw et al,
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2011; Marillia et al, 2014; Gesch et al, 2015; Lawton,
2019; Seepaul et al, 2021; Nóia-Júnior et al, 2022),
whereas in Asia it is primarily cultivated for oilseed
production (Katiyar et al, 1986; Lawton, 2019; Thakur
et al, 2019).

B. carinata seeds are rich in oil, with contents ranging
from 25% to 47% by weight (Taylor et al, 2010; Redda
et al, 2022; Ambaw et al, 2024a). The oil is used
as an edible oil in Ethiopia after being blended with
Nuge (Guizotia abyssinica) oil and/or other vegetable
oils (Belete et al, 2012; Bosekeng, 2019; Thakur et al,
2019; Alemaw and Gurmu, 2023). Characterized by
a high erucic acid content, the oil possesses desirable
physicochemical properties, such as low free fatty acid
content and abundant unsaponifiable matter, enhancing
its stability and quality (Cardone et al, 2003; Mohdaly
and Ramadan, 2022). These attributes, combined with
the low moisture and acidity levels (< 1% and
0.98% as oleic acid, respectively), make B. carinata
oil a versatile feedstock. Its industrial applications
encompass biodiesel and bio-jet fuel production, as
well as the manufacturing of lubricants, plastics, soaps
and detergents (Mohdaly and Ramadan, 2022; Redda
et al, 2022). The biomass, particularly its high-protein
content seed meal, serves as a nutritious supplement
for livestock, poultry and swine (Paula et al, 2019;
George et al, 2021). It also helps manage soil-borne pests
through biofumigation, releasing biocidal compounds,
particularly isothiocyanates, which are effective against
various soil pathogens (dos Santos et al, 2021; Iboyi
et al, 2022).

Studies on B. carinata revealed a complex inter-
play between genetic diversity, phenotypic variation
and agronomic potential. Population structure analy-
ses using SNP (Tesfaye et al, 2023) and SSR mark-
ers (Thakur et al, 2020; Zhou et al, 2022) indicated
moderate genetic diversity, low heterozygosity and lim-
ited gene flow. Tesfaye et al (2023) reported het-
erozygosity of 0.30 and nucleotide diversity of 1.31
× 10-5, while Thakur et al (2020) observed an aver-
age of 3.03 alleles per marker. Phenotypic studies high-
lighted significant morphological diversity, including oil
content (Mohdaly and Ramadan, 2022; Ambaw et al,
2024b). B. carinata also demonstrated superior pro-
ductivity, economic returns and environmental perfor-
mance compared to other mustard species (Rathore
et al, 2022). Further research has explored trait corre-
lations and identified markers for seed quality (Zhang
et al, 2017), and QTL for traits like flowering time and
oil content (Mohdaly and Ramadan, 2022). Character-
izing germplasm is essential for understanding pheno-
typic and genetic diversity, and is crucial for selecting
accessions for breeding programmes and designing con-
servation strategies (Kumari et al, 2023; Salgotra and
Chauhan, 2023).

Morphological traits, such as seed size and plant
height, are primary criteria for selecting accessions in
breeding programmes due to their ease of measure-
ment (El-Esawi, 2018; Swarup et al, 2021). Traits such

as seed oil content and quality, as well as biomass pro-
duction, help to select genotypes meeting standards for
consumption or industrial use (Zhang et al, 2017; Tes-
faye et al, 2019).

Some studies have assessed several morphological
traits of B. carinata, such as plant height, leaf shape, seed
size and flowering time. Zada et al (2013) evaluated
132 accessions and documented significant phenotypic
variability. Hagos et al (2020) also reported significant
differences in leaf size attributes (p < 0.001) and
phenological traits of 313 accessions.

Despite extensive research on the potential of
Ethiopian mustard for biofuel applications, a compre-
hensive understanding of its morphological, agronomic,
seed and oil content traits remains crucial for developing
effective breeding strategies for a range of purposes, as
these traits have a significant impact on seed and oil pro-
duction. This study aims to evaluate B. carinata acces-
sions to determine their seed and oil production poten-
tial and diversity to be utilized in breeding programmes.

Materials and methods

Plant material

A total of 49 Ethiopian mustard accessions were evalu-
ated in this study. The planting materials comprised 47
landraces, randomly selected from eight geographically
clustered regions within the collections of the Ethiopian
Biodiversity Institute, Addis Ababa Ethiopian Biodiver-
sity Institute (EBI, https://ebi.gov.et). Additionally, two
released varieties, ‘Holetta-1’ and ‘S-67’, developed by
the Holeta Agricultural Research Center, were included.
The passport data of the accessions used and the pedi-
gree of the released varieties are provided in Supple-
mental Table 1.

The Ethiopian Biodiversity Institute (EBI), the source
of the landrace accessions, provided limited quantities of
seed for each accession. Specifically, each accession was
provided with only 4g of seed, which was insufficient
for establishing trials at more than two locations.
This limitation restricts the assessment of genotype-by-
environment (G×E) interactions across a wider range of
environmental conditions.

Experimental site

Field experiments were conducted at two agricultural
research centres in Ethiopia during the 2018 cropping
season. The first location, Holeta, is situated 40km
southwest of Addis Ababa at an altitude of 2,400m
above sea level (m.a.s.l.), with coordinates of 9◦3′N
latitude and 38◦30′E longitude. The soils in this
area are predominantly nitosols and vertisols with
the region receiving an average annual rainfall of
1,008.14mm (Tura et al, 2021) and a mean maximum
and minimum temperature of 22.3◦C and 6.15◦C,
respectively (Geleta et al, 2024). The second location,
Asela, is located 170km south of Addis Ababa at an
altitude of 2,200 m.a.s.l., with coordinates of 8◦1′N
latitude and 39◦9′E longitude. Asela’s soils are primarily
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lateritic and black cotton, with an average annual
rainfall of approximately 1,000mm (ETWRDEC (2017);
Fekadu (2021)) and a mean minimum and maximum
temperature of 5.0◦C and 28.0◦C, respectively (Megersa
et al, 2024).

Experimental procedure

Experiments were conducted at two sites utilizing a 7×7
lattice design with two replications of 49 accessions. The
design was chosen due to the limited seed availability
from EBI. The plot size was 1.8m2, consisting of four
rows 30cm apart and measuring 1.5m in length. Seeds
were sown by hand drilling in rows at a rate of 5kg/ha.
At both sites, fertilizers at a rate of 46kg/ha nitrogen
and 69kg/ha P2O5 were applied. Following EARO
(2004) guidelines, conventional agricultural practices,
encompassing field preparation, nutrient application
and weed control measures were implemented.

Data collection

Plant-based data: Measurements were conducted from
five randomly selected plants per plot. Leaf petiole
length, leaf length and leaf width were measured from
five middle leaves of each selected plant. Number
of leaves per plant, plant height, number of primary
branches per plant and seed yield per plant were
recorded from the same five plants. Main raceme length
and number of siliques per main raceme were recorded
from five main racemes of the same selected plants.
Silique length, silique width, and number of seeds per
silique were measured for five siliques selected from the
main racemes of each of the same five plants. Mean
values for the measured traits were calculated from
these measurements. Measurements of selected traits
were conducted according to the International Board
for Plant Genetic Resources descriptors for Brassica and
Raphanus (IBPGR, 1990).

Plot-based data: For each plot, the following data
were collected from the two central rows: days to
flowering, days to maturity, thousand seed weight and
seed yield per hectare.

Seed quality analysis was conducted at the Agricul-
ture and Agri-Food Canada – Saskatoon Research and
Development Centre in Saskatchewan, Canada. The oil
and protein content of the seeds was determined using
near-infrared reflectance spectroscopy (Foss Model
6500). Oil and protein concentrations were expressed
as percentages on a moisture-free basis (Hossain et al,
2018). Total glucosinolates were extracted and puri-
fied using ion-exchange chromatography and on-column
enzymatic desulfation (Thies, 1980). Trimethylsilyl
derivatives were prepared using the acetone and 1-
methylimidazole-based method of Landerouin et al
(1987).

In this study, data were collected at various growth
stages according to the Biologische Bundesanstalt,
Bundessortenamt und Chemische Industrie (BBCH)
scale. Early leaf development traits were recorded at
BBCH 19, branching and flowering traits at BBCH 50,

and silique, seed, and maturity traits at BBCH 90 (Meier,
2018).

Data Analysis

Data analysis was performed using R software (R Core
Team, 2023) packages. Analysis of variance (ANOVA)
was conducted using the ’PBIB.test’ function from the
agricolae package (Mendoza, 2023) for individual loca-
tion analyses, while the ’aov’ function from the same
package was used for the combined analysis across loca-
tions. Scatter plot mean seed yield per hectare com-
parison was performed by R software ggplot2 pack-
age (Wickham, 2016). Mean separation was carried out
using Tukey’s Honestly Significant Difference (HSD) test,
also implemented in the agricolae package (Mendoza,
2023). Before doing the combined analysis of variance,
a test for homogeneity of variance was performed (F-
test) (Mead et al, 2003). The phenotypic and geno-
typic correlation coefficients were calculated using the R
software variability package (Popat et al, 2020), which
implements the methods described by Singh and Chaud-
hary (1977) as described below:

Phenotypic correlation coefficient:
rp =

Covp(xy)√
Vp(x)Vp(y)

Where Covp(xy) is the phenotypic covariance between
trait x and trait y, Vp(x) and Vp(y) are the phenotypic
variances of x and y, respectively.

Genotypic correlation coefficient:
rg =

Covg(xy)√
Vg(x)Vg(y)

Where Covg(xy) is the genotypic covariance between
trait x and trait y, Vg(x) and Vg(y) are the genotypic
variances of x and y, respectively.

Heatmaps of the correlation results were created by
the R software pheatmap package (Kolde, 2019). Prin-
cipal component analysis (PCA) and Ward’s D2 Linkage
and Euclidean distance hierarchical method cluster anal-
ysis were performed using the ‘factoextra’ (Kassambara
and Mundt, 2020) and ‘FactoMineR’ (Le et al, 2008)
packages. The optimal number of clusters was deter-
mined using ‘NbClust’ package (Charrad et al, 2014).

Results and discussion

Overview of trait variation across locations

Accessions showed coefficients of variation (CV) ranging
from 4.8% to 32.8% (Table 1), consistent with the
high coefficients of variation (> 20) observed for traits
such as leaf petiole length, leaf length, leaf width,
primary branches per plant, number of siliques per main
raceme, and seed yield per hectare at both locations
in this study. Ambaw et al (2024b) also reported
similarly high CVs, suggesting that these traits exhibit
substantial phenotypic plasticity and/or are strongly
influenced by genetic factors segregating within our
accessions (Table 1). The fact that high CVs were
observed at both locations implies a consistent influence,
hinting at significant G×E interactions. The average
seed yield per hectare was slightly higher at Asela, at
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Table 1. Summary statistics of agronomic, morphological, and quality traits for 49 Brassica carinata accessions evaluated at Asela
and Holeta. LPL, leaf petiole length (cm); LL, leaf length (cm); LW, leaf width (cm); LPP, leaves per plant; DF, days to flowering;
DM, days to maturity; PH, plant height (cm); PB, primary branches per plant; MRL, main raceme length (cm); SPMR, number of
siliques per main raceme; SL, silique length (mm); SW, silique width (mm); SPS, number of seeds per silique; TSW, thousand seed
weight (g); SYppl, seed yield per plant (g); SYpha, seed yield per hectare (kg); OIL, oil content (%); PRO, protein content (%); TG,
total glucosinolate content (µmol/g); Min, minimum; Max, maximum; SD, standard deviation; CV, coefficients of variation.

Trait
Asela Holeta

Mean ± SD Min Max CV Mean ± SD Min Max CV
LPL 13.5 ± 3.7 4.9 21.7 27.6 11.4 ± 3.7 2.7 19.5 32.8
LL 28.2 ± 6.5 9 40.7 23.1 26.3 ± 6.5 7 38.2 24.5
LW 10.9 ± 2.2 5.8 15.8 19.9 12.4 ± 2.5 5.4 18.5 20.1
LPP 99 ± 14.2 67 123.1 14.3 92.9 ± 14.4 59.5 118.1 15.5
FD 86.7 ± 10.4 61 109 12 92 ± 9.7 66 114.5 10.5
MD 153.1 ± 14.5 127 180.5 9.5 174.4 ± 8.4 148.5 188.5 4.8
PH 197.7 ± 13.9 162 220.5 7 188.7 ± 19.2 114 219.5 10.2
PB 14.3 ± 3 8.2 20.3 21.2 14.5 ± 3.1 8 20.3 21.2
MRL 5.5 ± 0.6 4.5 6.6 10.8 5.2 ± 0.4 4.4 6.1 8
SPMR 18.4 ± 4.5 11.2 28.6 24.6 18.6 ± 5.1 10 32.8 27.3
SL 28.5 ± 4.4 19.8 38.6 15.5 30.3 ± 4.9 20.3 40.2 16
SW 2.2 ± 0.2 1.7 2.8 10.6 2.4 ± 0.2 2.1 3.1 8.4
SPS 12.8 ± 1.4 9.8 15.6 11.1 12.7 ± 1.5 9.5 15.6 12.2
TSW 3 ± 0.5 1.9 4 16 3.1 ± 0.5 2.2 4.1 14.8
SYppl 3.6 ± 0.8 2.2 5.2 22.6 3.1 ± 0.8 1.6 4.7 26.2
SYpha 2,245.4 ± 500.3 1,262.1 3,074.2 22.3 2,161.6 ± 500 1,173.9 2,950.5 23.1
OIL 37.2 ± 2.5 32.6 43.1 6.7 44 ± 2.2 37.4 49.1 5
PRO 29.9 ± 2.1 25.8 34.6 7.1 26 ± 1.8 22.7 31.5 6.8
TG 99.9 ± 9.7 82.6 123.3 9.7 83.3 ± 8.5 61.6 99.2 10.2

2,245.4± 500.3kg (ranging from 1,262.1 to 3,074.2kg),
compared to 2,161.6 ± 500kg at Holeta (ranging from
1,173.9 to 2,950.5kg) (Table 1). This slight increase
in mean yield at Asela, along with consistent standard
deviations across locations, indicates relative similarity
in environmental conditions. However, the average oil
content was higher at Holeta, at 44 ± 2.2% (ranging
from 37.4 to 49.1%), compared to 37.2± 2.5% (ranging
from 32.6 to 43.1%) at Asela. The difference in trend
between seed yield and oil content may be attributed
to environmental differences, while the broad range
in yields and location-based variation in oil content
highlights the genotypic variability of B. carinata,
offering valuable potential for selection in future crop
improvement efforts.

Comparable yields for B. carinata have been reported
in other studies. Seepaul et al (2021), in a lit-
erature review of multiple field trials, summarized
yields ranging from 1,929kg/ha to 2,732kg/ha. Further-
more, Tesfaye et al (2023) found a seed yield aver-
age of 3,185kg/ha on selected B. carinata genotypes
in Ethiopia. Similarly, Iboyi et al (2023) reported a
range from a minimum seeding rate of 732kg/ha at a
1.12kg/ha to a maximum seeding rate of 1,087kg/ha
at 5.6kg/hain southeastern United States. For oil con-
tent, previous studies on B. carinata in Ethiopia have
also reported comparable findings. Ambaw et al (2024b)
reported oil content values ranging from 37.88% to
46.98%, while Redda et al (2022) observed oil content

between 35% and 45% in Ethiopian germplasm. These
results are consistent with the findings of this study,
highlighting the rich phenotypic diversity and potential
for improving seed yield and oil quality in B. carinata.

Analysis of variance

Individual location analysis results showed significant
variability among tested B. carinata accessions for most
of the traits except silique width, oil and protein content
at Asela and main raceme length and total glucosinolate
content at Holeta (Table 2). Combined location analysis
of variance revealed significant variation among acces-
sions for all traits, while the interaction between acces-
sion and location showed significant variation for the
traits flowering date, number of seeds per silique and
seed yield per hectare (Table 3).

The significant variations observed in most studied
traits among B. carinata accessions indicate substan-
tial genetic diversity within the species. This aligns
with Tesfaye et al (2023), who reported that 93% of
the genetic variation was attributed to molecular vari-
ance, and Thakur et al (2020), who found an aver-
age genetic diversity of 0.37. This diversity provides
opportunities for breeding programmes to develop cul-
tivars with desirable traits. The significant interaction
between genotype and location for certain traits sug-
gests that the performance of B. carinata accessions is
influenced by environmental factors. This implies that



Genetic Resources (2025), 6 (11), 41–56 Ethiopian mustard germplasm characterization 45

Table 2. Analysis of variance mean squares for replication, genotype, block, and error across agronomic, morphological, and quality
traits for 49 B. carinata accessions evaluated at Asela and Holeta. LPL, leaf petiole length (cm); LL, leaf length (cm); LW, leaf width
(cm); LPP, leaves per plant; DF, days to flowering; DM, days to maturity; PH, plant height (cm); PB, primary branches per plant;
MRL, main raceme length (cm); SPMR, number of siliques per main raceme; SL, silique length (mm); SW, silique width (mm); SPS,
number of seeds per silique; TSW, thousand seed weight (g); SYppl, seed yield per plant (g); SYpha, seed yield per hectare (kg);
OIL, oil content (%); PRO, protein content (%); TG, total glucosinolate content (µmol/g); CV, coefficients of variation. **, and *,
denote significance at p ≤ 0.01, and p ≤ 0.05 respectively.

Trait
Asela Holeta

Replication Genotype Block Error CV
(%)

Replication Geno-
type

Block Error CV
(%)

LPL 0.98 27.7** 0.5 0.5 5.2 56.94** 27.7** 0.6 0.5 6.5
LL 169.28** 84.8** 20.7 20.4 16.0 379.7** 83.4** 19.2 21.1 17.4
LW 44.72** 9.5** 2.7 2.1 13.4 31.09** 12.4** 3.2 2.5 12.7
LPP 263.19** 403.4** 10.8 13.5 3.7 26.13 416.7** 12.9 14.8 4.1
FD 32 217** 6.7 7.9 3.2 54.38** 186.1** 11.1* 4.7 2.4
MD 2.3 420.4** 51.1 43.9 4.3 3.31 142.3** 35 23.3 2.8
PH 1,389.4** 387.3** 84.6 141.6 6.0 11,100.5** 733.3** 120.8 153.3 6.6
PB 0.09 18.5** 2.2 2.9 11.8 266.48** 18.9** 3.3 3 11.9
MRL 0.5 0.7** 0.4 0.2 8.8 71.54** 0.4 0.2 0.3 10.1
SPMR 5.93 40.8** 2.8 3.1 9.6 6.9 51.5** 2.3 5.4 12.5
SL 4.57 39** 18.6 17.2 14.5 188.3** 47.2** 23.6 18.2 14.1
SW 0.06 0.1 0.1 0.1 14.4 0.01 0.1** 0.1 0.04 8.0
SPS 0.03 4** 1.6 1.4 9.4 0.74 4.7** 0.8 1.5 9.7
TSW 0.11 0.4** 0.1 0.1 11.9 0.29 0.4** 0.1 0.1 11.6
SYppl 0 1.3** 0.1 0.1 7.3 0.17 1.3** 0.04 0.1 7.9
SYpha 5,437.06 500,587.4** 30,678.6 28,324.7 7.5 134,332.25* 499,973.6** 35,619.7 18,572.4 6.3
OIL 19.2 12.5 7.4 9.7 8.4 0.52 9.5** 3.9 3.2 4.1
PRO 29.85 9.1 3.4 6.1 8.3 15.35* 6.3* 5.2 3.7 7.4
TG 710.02** 186.6** 56.4 84.2 9.2 1,142.64** 145.1 137.2 110.5 12.6

Table 3. Analysis of variance mean squares for location, genotype and their interaction across agronomic, morphological and quality
traits in the combined evaluation of 49 Brassica carinata accessions. LPL, leaf petiole length (cm); LL, leaf length (cm); LW, leaf
width (cm); LPP, leaves per plant; DF, days to flowering; DM, days to maturity; PH, plant height (cm); PB, primary branches per
plant; MRL, main raceme length (cm); SPMR, number of siliques per main raceme; SL, silique length (mm); SW, silique width
(mm); SPS, number of seeds per silique; TSW, thousand seed weight (g); SYppl, seed yield per plant (g); SYpha, seed yield per
hectare (kg); OIL, oil content (%); PRO, protein content (%); TG, total glucosinolate content (µmol/g); CV, coefficients of variation.
**, and *, denote significance at p ≤ 0.01, and p ≤ 0.05 respectively.

Trait Location Genotype (G×L) Error CV (%)
LPL 223.93** 55.4** 0.02 1.1 8.5
LL 180.13** 168.1** 0.04 25.7 18.6
LW 107.86** 21.6** 0.3 3.2 15.3
LPP 1,836.73** 818.5** 1.6 16.2 4.2
FD 1,363.72** 391.6** 11.5* 7.7 3.1
PB 2.17 37.2** 0.2 5.5 16.3
SPMR 2.87 90.3** 2 3.9 10.6
SL 167.15** 83.9** 2.3 20.1 15.3
SW 3.12** 0.13** 0.06 0.07 11.3
SPS 0.75 6.4** 2.4* 1.4 9.3
TSW 0.62* 0.8** 0 0.1 11.2
SYppl 13.31** 2.5** 0.1 0.1 7.7
SYpha 344,348.37** 948,487.3** 52,073.7** 26,771.9 7.4
OIL 14,693,939.17** 99,738** 44,010.9 38,121.2 11.7
PRO 765.71** 9.4** 6.1 5.1 8.1
TG 13,474.13** 206.2** 125.5 114.1 11.7
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selecting genotypes for specific growing conditions is
crucial for optimal yield and quality. The lack of signifi-
cant variation in silique width and oil and protein con-
tent at Asela (Table 2) might indicate a relatively narrow
genetic variation or a strong genetic control over these
traits; however, in the case of silique width, although
the genotypic mean square was similar between Asela
and Holeta, significance was detected only at Holeta
due to its lower experimental error, which increased
the F-ratio and statistical power to reveal genotypic dif-
ferences. Meanwhile, the significant variation in main
raceme length and total glucosinolate content recorded
at Asela but not at Holeta (Table 2) suggests that there
is a high environmental influence on the expression of
these traits. The significant interactions between geno-
type and location for flowering date, seeds per silique
and seed yield per hectare highlight the importance of
considering both genetic factors and environmental con-
ditions when selecting genotypes for specific regions.

Similar significant variability among B. carinata
genotypes has been reported by Belete (2011); Walle
et al (2014); Dhaliwal et al (2019); Amsalu (2020b,c);
Mahendra-Salam et al (2021) and Khan et al (2022).
The observation that the majority of genotype-by-
location (G×L) interactions in our combined analysis of
variance were non-significant (Table 3) aligns with the
findings of Adeniji and Aloyce (2012), but contrasts with
the reports of significant G×L interactions by Kumar et al
(2020) and Tadesse et al (2021). This discrepancy in
results could stem from several factors related to the
experimental design, the germplasm studied and the
environmental conditions.

Correlation analyses

Phenotypic correlation analysis at the two locations
revealed significant positive and negative associations
among various agronomic and seed traits (Figures 1
and 2). Leaf and phenological traits exhibited the
strongest positive phenotypic correlations at both
locations, including leaf petiole length with leaf
length (0.80, 0.80), leaf width (0.80, 0.78), flowering
date (0.78, 0.72), and maturity date (0.73, 0.58);
leaf length with leaf width (0.90, 0.89), flowering
date (0.72, 0.70), and maturity date (0.65, 0.58);
leaf width with flowering date (0.70, 0.66) and
maturity date (0.64, 0.61); and flowering date with
maturity date (0.81, 0.79). Additionally, strong positive
phenotypic correlations were observed for seed yield
per plant with seed yield per hectare (0.87, 0.92)
and protein content with total glucosinolate content
(0.81, 0.80) at Asela and Holeta, respectively. Similarly,
consistently significant negative phenotypic correlations
were recorded for oil content with protein content (-
0.83, -0.78) and with total glucosinolate content (-0.80,
-0.52) at Asela and Holeta, respectively.

To fully understand the genetic relationships underly-
ing the observed phenotypic variation, analyzing geno-
typic correlations among the studied traits is essential.
This analysis offers valuable insights into the genetic

linkages between traits, aiding in the identification of
potential breeding targets and providing a deeper under-
standing of the genetic limitations within B. carinata.

The genotypic correlation analyses of this study
revealed several significant associations among the
considered traits for both locations (Figures 1 and 2).
Strong positive correlations were again observed among
leaf and phenological traits, including leaf petiole length
with leaf length (0.99, 0.99), leaf width (0.98, 0.92),
flowering date (0.80, 0.77) and maturity date (0.81,
0.70); leaf length with leaf width (0.98, 0.96), flowering
date (0.89, 0.98) and maturity date (0.91, 0.99);
and leaf width with flowering date (0.82, 0.89) and
maturity date (0.88, 0.98). Flowering date also showed
high correlations with maturity date (0.92, 0.97).
Additionally, strong positive genotypic correlations were
recorded for seed yield per plant with seed yield per
hectare (0.99, 0.99) and plant height (0.61, 0.58); and
for thousand seed weight with leaf length (0.67, 0.72),
leaf width (0.77, 0.78), maturity date (0.57, 0.61),
and plant height (0.72, 0.66) at Asela and Holeta,
respectively. Seed yield per hectare showed significant
positive associations with the number of siliques per
main raceme (0.52, 0.52) and thousand seed weight
(0.53, 0.49). Negative significant correlations were
recorded for oil content with protein content (-0.50, -
0.66) and total glucosinolate content (-0.84, -0.59) at
Asela and Holeta, respectively.

The strong positive correlations observed in this study
between leaf traits (leaf length, leaf width, and leaf
petiole length) are consistent with previous research
by Yimer et al (2021). This suggests a consistent
genetic and environmental influence on these traits in B.
carinata. As expected, the positive correlation between
plant height and phenological traits (flowering and
maturity dates) observed in this study aligns with Walle
et al (2014). This relationship is likely due to the
natural elongation of the flowering spike contributing to
plant height. However, confirming this correlation in B.
carinata under the studied conditions helps strengthen
its role in breeding for synchronized flowering and
uniform plant architecture.

The positive correlations between seed yield per
hectare and seed yield per plant are further supported
by Amsalu (2020a) and Belete (2011). These findings
highlight the importance of seed yield per plant and the
number of siliques per main raceme as key determinants
of overall yield. Marjanović-Jeromela et al (2007)
provide additional evidence for the significance of these
traits in Brassica species. The positive correlation of
thousand seed weight with various traits, including leaf
length and width, maturity date and plant height, aligns
with the findings of Tadessel and Alemu (2019). This
underscores the importance of seed weight in yield
improvement.

The inverse relationship between oil content and
protein and glucosinolate contents observed in this
study is consistent with previous research by Tadessel
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Figure 1. Heatmap displaying phenotypic (above diagonal) and genotypic (below diagonal) correlation coefficients for 19 traits
measured in Brassica carinata accessions grown at Asela. LPL, leaf petiole length (cm); LL, leaf length (cm); LW, leaf width (cm);
LPP, leaves per plant; DF, days to flowering; DM, days to maturity; PH, plant height (cm); PB, primary branches per plant; MRL,
main raceme length (cm); SPMR, number of siliques per main raceme; SL, silique length (mm); SW, silique width (mm); SPS,
number of seeds per silique; TSW, thousand seed weight (g); SYppl, seed yield per plant (g); SYpha, seed yield per hectare (kg);
OIL, oil content (%); PRO, protein content (%); TG, total glucosinolate content (µmol/g). **, and *, indicates significant at p ≤
0.01, and p ≤ 0.05 , respectively.

and Alemu (2019), confirming the common trade-off
between these seed quality traits in oilseed crops.

However, the positive genotypic correlations between
thousand seed weight and phenological traits in this
study differ from the negative associations reported
by Khan et al (2022) and Kumar-Singh et al (2018).
Different B. carinata accessions possess distinct genetic
architectures (Tesfaye et al, 2023). Discrepancies in cor-
relation results may be partly attributed to the simple
lattice design employed. Residual environmental het-
erogeneity within blocks, location-by-block interactions
and incomplete blocking effects could have influenced
trait correlations. Future studies should consider spa-
tial analysis techniques to account for these factors.
The observed inconsistencies in the correlations between
main raceme length and protein and oil content, as well
as silique width and total glucosinolate content, across
different locations, suggest that environmental factors
play a significant role in influencing the expression of
these traits. This result highlights the need for future
research that specifically investigates the G×E interac-
tions governing these complex trait relationships in B.
carinata.

The strong associations observed between leaf, phe-
nological and seed traits in this study highlight their
potential as target traits for breeding programmes
aimed at improving B. carinata yield and quality.
However, the influence of environmental factors on
trait expression underscores the importance of con-

ducting multi-location trials and considering geno-
type–environment interactions when selecting geno-
types for specific regions.

Principal component analysis

A principal component analysis (PCA) was employed
to examine the combined data from Asela and Holeta.
This analysis identified six principal components (PCs),
each with eigenvalues greater than 1 according to
Kaiser’s criterion (Jolliffe, 2002). Together, these six
PCs accounted for 82.0% of the total variability
(Supplemental Table 2). The first two components (PC1
and PC2) represented 52.7% of the overall variation
and were visualized in a biplot (Supplemental Table
2, Figure 3). The distribution of accessions on the
biplot reveals considerable genetic diversity among the
accessions. PC1, accounting for 31% of the variance, is
characterized by strong positive loadings for leaf petiole
length (0.90), leaf length (0.94), leaf width (0.92),
days to flowering (0.89), and days to maturity (0.88),
indicating that accessions with greater values for traits
that influence plant structure and phenology grouped
together in PC1 and suggests that selecting for plant leaf
area could lead to later maturity. PC2, which explained
a further 21.7% of the variation, was characterized by
substantial contributions from plant height (0.69), seed
yield per plant (0.73), seed yield per hectare (0.75)
and the number of siliques per main raceme (0.61),
implying a connection between taller plants with a
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Figure 2. Heatmap displaying phenotypic (above diagonal) and genotypic (below diagonal) correlation coefficients for 19 traits
measured in Brassica carinata accessions grown at Holeta. LPL, leaf petiole length (cm); LL, leaf length (cm); LW, leaf width (cm);
LPP, leaves per plant; DF, days to flowering; DM, days to maturity; PH, plant height (cm); PB, primary branches per plant; MRL,
main raceme length (cm); SPMR, number of siliques per main raceme; SL, silique length (mm); SW, silique width (mm); SPS,
number of seeds per silique; TSW, thousand seed weight (g); SYppl, seed yield per plant (g); SYpha, seed yield per hectare (kg);
OIL, oil content (%); PRO, protein content (%); TG, total glucosinolate content (µmol/g). **, and *, indicates significant at p ≤
0.01, and p ≤ 0.05 , respectively.

prolific density of siliques that led to high seed yield.
This association points to a potential breeding target:
increasing plant height and silique density to enhance
overall seed yield. However, it is crucial to consider the
potential for lodging associated with taller plants and
high silique density. Breeding efforts should also focus
on improving stem strength and lodging resistance to
ensure that increased yield is not compromised by plant
instability.

The distribution of accessions on the biplot reveals
considerable genetic diversity, suggesting a rich resource
for future breeding efforts and highlighting the potential
for selecting lines with desirable trait combinations. The
PCA biplot demonstrated that accessions 24494, 24495,
21373, 24203 and 17545 were closely aligned with
traits such as plant height, seed yield per plant, seed
yield per hectare and thousand seed weight, all of which
exhibited strong positive loadings on PC2. This close
relationship suggests that these accessions are strongly
associated with increased plant height and seed yield
potential. Similarly, accessions 21383, 208404, 212665,
19959 and 208412 were positioned near the oil content
(Figure 3), demonstrating the potential for enhanced
seed oil production. In contrast, the released varieties
‘S-67’ and ‘H1’ were not best suited for seed-related and
oil traits.

Abraha et al (2024) used PCA for the classification
of 313 B. carinata accessions for 18 traits and reported
the first and second PCs accounted for 34.3% of
the observed variability. PC1 explained 22.2% of the
variability between the morphological attributes and
most strongly accounted for the differences between
the accessions, which is a lower proportion than this
study PC1 variation (31.03%). The difference may be
attributed to differences in the genetic diversity and
population structure of the germplasms analyzed. Belete
(2011) analyzed 36 B. carinata accessions for nine
agro-morphological traits and reported that 91.4% of
the total variation was contributed by the first five
principal components, which is a comparable result
to the 82.03% cumulative variance explained by the
first six PCs in our study. Kumar et al (2020) also
applied principal component analysis using seven traits
of 11 B. carinata accessions and found that only the
first four principal components showed eigenvalues
greater than one and they cumulatively explained a
similar proportion (82.46%) of the total variability
in this study. This suggests that all three datasets
capture a large proportion of the total variability
within a relatively small number of underlying PCs.
The closeness in variability proportion suggests that,
despite the differences in sample size and specific
traits considered, the patterns of diversity within B.
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Figure 3. CA biplot of the first two principal components of B. carinata accessions, highlighting trait loadings (red arrows) and
accession distribution (blue dots) across combined locations. LPL, leaf petiole length (cm); LL, leaf length (cm); LW, leaf width
(cm); LPP, leaves per plant; DF, days to flowering; DM, days to maturity; PH, plant height (cm); PB, primary branches per plant;
MRL, main raceme length (cm); SPMR, number of siliques per main raceme; SL, silique length (mm); SW, silique width (mm);
SPS, number of seeds per silique; TSW, thousand seed weight (g); SYppl, seed yield per plant (g); SYpha, seed yield per hectare
(kg); OIL, oil content (%); PRO, protein content (%); TG, total glucosinolate content (µmol/g). Direction of red arrow indicates the
association of the corresponding trait with the principal components, while the length of the arrow reflects the magnitude of the
trait’s contribution (longer arrows = stronger influence); light blue accessions with higher cos2 values (well-represented by PC1
and PC2); deep blue, accessions with lower cos2 values (poorly represented by PC1 and PC2).

carinata germplasms are consistently captured by a
relatively small number of PCs. These PCA results hold
significant agricultural implications for informing B.
carinata breeding programmes aimed at enhancing seed
yield, oil content and overall agronomic performance.

Cluster analysis

Cluster analysis can be applied to various samples and
descriptors to examine the relationships and distances
among them. In germplasm collections, it is useful for
assessing genetic similarities and differences. Under-
standing genetic distance, the measure of dissimilarity
between accessions, is key to predicting the success of
crop improvement efforts (Peeters and Martinelli, 1989).

Cluster analysis conducted on the combined data
from Asela and Holeta grouped the tested accessions
into three distinct clusters of 21, 21, and 7 members,
respectively (Figure 4). The two released varieties were
both placed in Cluster I. Cluster I is characterized by
the highest mean scores for seed yield per hectare, seed

yield per plant, plant height and main raceme length
(Supplemental Table 3). Cluster II is distinguished by
the highest mean values for leaf petiole length, leaf
length, leaf width, number of leaves per plant, days
to flowering, days to maturity, number of primary
branches per plant, silique length, protein content and
total glucosinolate content. Cluster III has the highest
mean values for number of siliques per main raceme,
number of seeds per silique and seed oil content.
Cluster III exhibited the highest intra-cluster distance
(5.6), indicating a high level of genetic diversity among
the accessions (Supplemental Table 3). The greatest
inter-cluster distance was recorded between Cluster
II and Cluster III (7.4), which suggests a high level
of genetic divergence, making accessions from these
clusters promising for hybridization. This was followed
by the distance between Cluster I and Cluster III (7.3),
and between Cluster I and Cluster II (6.0).

The clustering results from the dendrogram corre-
sponded to the findings of both principal component
analysis (PCA) and correlation studies. For instance,
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accessions 17545, 17562, 24203, 21373, 24494, 24495,
212665, 20913 and 24491 fall in the same quadrant
of the PCA biplot and are closely associated with plant
height, seed yield per plant, seed yield per hectare, thou-
sand seed weight, number of siliques per main raceme,
primary branches per plant, leaf length and leaf width;
these traits are significantly positively correlated with
seed yield per hectare. The primary distinctions between
clusters are influenced by the same characteristics that
are significant contributors to the first and second prin-
cipal components. Accessions grouped within the same
cluster exhibited greater similarity to each other than
those in separate clusters, further confirming the rela-
tionships identified through these analytical methods.

The diversity in cluster numbers identified across
B. carinata research, can be attributed to variations
in genetic diversity, accession selection and study
design. For example, the lower cluster counts reported
by Muthoni (2010) (two clusters in 47 genotypes)
and Adeniji and Aloyce (2012) (three clusters in 14
genotypes)are likely due to smaller sample sizes and
limited genetic representation. Conversely, studies with
larger numbers of more diverse accessions, such as
those by Zada et al (2013), Abraha et al (2024)
(eight clusters in 313 genotypes) and Ambaw et al
(2024a) (seven clusters in 386 genotypes), captured
greater genetic diversity by incorporating genotypes
from multiple geographic regions, agroecological zones
and possibly wild relatives.

Our study, which identified three distinct clusters
among 47 B. carinata landraces, aligns with the trend
observed in these previous studies. The number of
clusters we found is consistent with studies that utilized
a moderate sample size and landrace accessions, which
are known to exhibit substantial genetic diversity. This
suggests that while our sample size was comparable
to Muthoni (2010), the inclusion of diverse landraces
contributed to the identification of a greater number of
distinct groups.

These disparities also highlight the impact of
methodological choices: more recent studies employing
advanced genotyping tools (e.g. SNPs or SSRs) and
sensitive clustering algorithms (e.g. STRUCTURE) have
enabled a more precise analysis of population structure.
In our study, we used phenotypic data for clustering,
which, while informative, may not have captured
the same level of genetic resolution as molecular
markers. However, the congruence between our cluster
analysis, PCA, and correlation studies suggests that the
phenotypic data effectively revealed meaningful genetic
relationships among the accessions.

The variability in cluster numbers underlines the
need for standardized experimental approaches that
integrate extensive, diverse germplasm collections with
high-resolution markers to enhance genetic diversity,
refine breeding strategies and preserve adaptive alleles
in B. carinata.

Mean performance comparison

Mean seed yield per hectare values for the evaluated
accessions showed a clear positive relationship between
Asela and Holeta (Supplemental Figure 1). This finding
is consistent with studies like Abu et al (2022), who
used the Additive Main Effects and Multiplicative
Interaction (AMMI) analysis to identify six B. carinata
accessions exhibiting relatively stable performance
across environments. As mean yield increased at Asela,
it also tended to increase at Holeta, indicating that
accessions with high seed yield per hectare in one
location generally performed well in the other.

Tukey’s mean difference test was applied to traits that
showed significant results in the analysis of variance.
Based on mean performance accessions 17545, 21373,
21378, 24203, 24493, 24494, 208609, 212665 and
216845 exhibited increased leaf length, increased leaf
width, a greater number of primary branches, longer
siliques, more seeds per silique, higher thousand seed
weight, higher seed yield per hectare, higher oil content,
higher protein content and a high total glucosinolate
content at both locations (Supplemental Tables 4 and
5, respectively).

However, there were two exceptions: accession 21378
did not rank first in terms of the number of primary
branches per plant at either location, and accession
24493 did not rank first for total glucosinolate content
at Asela with respect to the traits under consideration.
Despite these exceptions, the identified accessions
showed strong potential for improving key traits like
seed yield, oil content and protein content, all of which
are economically valuable. The variability in rankings
for 21378 and 24493 accessions with regard to specific
traits suggests that these accessions may exhibit trait-
specific responses depending on the environment.

In this study, genotypic variation was assessed based
on phenotypic differences in the studied traits. Signifi-
cant variations among the B. carinata accessions were
observed, which is consistent with the findings of Tes-
faye et al (2023), who reported moderate genetic diver-
sity in B. carinata populations (average expected het-
erozygosity = 0.31, polymorphism information con-
tent = 0.26), indicating variability among accessions.
While our study assessed phenotypic diversity based
on mean trait values, Thakur et al (2020) reported
a gene diversity of 0.37, which reflects the average
genetic variation within populations. Khedikar et al
(2020) reported low molecular genetic diversity in B.
carinata accessions (heterozygosity = 0.30, nucleotide
diversity = 1.31×10−5), suggesting limited variability
due to a narrow genetic base and potential inbreed-
ing effects. Phenotypic diversity reflects the combined
effects of genetic and environmental factors, while
molecular diversity captures variation at the DNA level.
Differences in sampling strategies, molecular markers
and potential inbreeding effects can influence molec-
ular genetic diversity estimates and contribute to dis-
crepancies between studies. It is important to acknowl-
edge that direct comparisons between phenotypic and
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Figure 4. Dendrogram of 49 Brassica carinata accessions assessed for 19 studied traits at Asela and Holeta using Ward’s D2 Linkage
and Euclidean distance.

molecular diversity estimates should be interpreted with
caution, as they reflect different aspects of genetic vari-
ation. These differences in genetic diversity estimates
could be attributed to variations in the B. carinata pop-
ulations studied, the types of molecular markers used
and the sampling strategies employed. Further research
is needed to elucidate the underlying factors contribut-
ing to these discrepancies.

Positive correlations between seed yield per plant
and siliques per main raceme suggest opportunities for
enhancing overall yield (Dwivedi et al, 2023; Saini et al,
2023). PCA effectively identified key traits: plant height,
seed yield per plant, seed yield per hectare, thousand
seed weight and oil content driving variation within
the B. carinata accessions. This helps in pinpointing
promising genotypes for crop improvement, as the initial
principal components capture a significant percentage of
the total variance, focusing on genetic differences that

influence important agronomic traits like seed and oil
yield.

Moreover, clustering accessions based on trait simi-
larities supports targeted breeding strategies. However,
the variability in genotype rankings across different
environments highlights the importance of consider-
ing G×E interactions in breeding programmes (Kumar
et al, 2020; Tesfaye et al, 2024). Thus, these findings
underscore the need for robust multi-location and multi-
season trials to effectively evaluate genotype adaptabil-
ity and optimize crop improvement efforts for B. cari-
nata. While our study revealed variability in accession
rankings across the two locations, suggesting poten-
tial G×E interactions, the limited number of experi-
mental sites (Haleta and Asela) restricts our ability to
draw strong conclusions. As detailed in the Materials
and Methods, seed limitations from EBI constrained
our study to these two locations. Consequently, the
observed variation may reflect random environmental
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noise rather than robust G×E patterns. Future studies
should prioritize multi-location trials to capture a wider
range of environmental influences and provide more
reliable insights into genotype adaptability.

Conclusion

The study emphasizes the importance of genetic diver-
sity within B. carinata and the need for multi-location
trials to ensure the identification of accessions with sta-
ble performance and adaptability across different envi-
ronments. However, due to limited seed availability from
EBI, this study was restricted to two experimental loca-
tions, limiting the scope of G×E interaction analysis.
Based on our findings, crop improvement efforts should
prioritize accessions 24494, 24495, 21373, 24203 and
17545 for yield improvement (based on plant height,
seed yield per plant, seed yield per hectare, and thou-
sand seed weight) and accessions 21383, 208404,
212665, 19959 and 208412 for enhanced oil content
(based on plant height, seed yield per plant, seed yield
per hectare, and oil content). To maximize trait expres-
sion, especially for environmentally influenced traits like
flowering date and seed yield, location-specific selec-
tion is crucial. Additionally, conducting multi-location
trials is essential for understanding genotype adaptabil-
ity and ensuring consistent performance across diverse
environments, ultimately supporting more effective crop
improvement strategies for B. carinata.

Our cluster analysis aligns with the trend of moderate
cluster numbers. However, the use of phenotypic data
for clustering, rather than high-resolution molecular
markers, may have limited the precision of our genetic
diversity assessment. Future studies should integrate
advanced genotyping tools and diverse germplasm
collections to enhance the understanding of genetic
diversity and refine breeding strategies in B. carinata.
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