A comprehensive study on how inbreeding influences the growth and reproductive traits of six indigenous chicken breeds subjected to selection programmes
Main Article Content
Abstract
Indigenous chickens are a significant element of the farming system in rural areas of Iran. This study presents a systematic analysis of how inbreeding affects the growth and reproductive traits across six indigenous chicken breeds that are under genetic selection programmes. Pedigree data of 404,597 chickens from six indigenous chicken breeding centres were collected and analyzed over 15 to 29 generations. The study included eight production and reproduction traits. The results showed that the average inbreeding coefficient in the studied populations varied between 2.2% to 6.3% in centres. The average inbreeding rate was estimated to be between 0.3% and 0.6%, which is within the acceptable range for breeding programmes. Regression analysis of studied traits on inbreeding percentage showed that increased inbreeding had a slight negative effect on some traits, such that every 1% increase in inbreeding resulted in a decrease of 1.53 to 3.51g in body weight at 12 weeks and an increase of 0.12 to 0.38 days in age at sexual maturity. However, the effect of inbreeding on egg traits was insignificant. In conclusion, despite the implementation of a closed breeding system and genetic selection in centres, inbreeding has increased slowly in the populations, and genetic diversity has been maintained at an adequate level due to the successful implementation of selection and mating programmes running in indigenous chicken breeding centres.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright of the articles published in Genetic Resources and grant the journal right of first publication with open access. All articles published in Genetic Resource are licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0) that allows others to download, share and adapt the work for commercial and non-commercial purposes as long as proper attribution to the original article is given. Genetic Resources permits and encourages authors to post items submitted to the journal (including the publisher's final layout) on personal websites or institutional repositories after acceptance and/or publication, while providing bibliographic details that credit their publication in Genetic Resources.
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716-723. doi: https://doi.org/10.1109/TAC.1974.1100705
Ameli, H., Flock, D. K., Glodek, P. (1991). Cumulative inbreeding in commercial White Leghorn lines under long-term reciprocal recurrent selection. Br. Poult. Sci 32, 439-449. doi: https://doi.org/10.1080/00071669108417369
Barros, E. A., Brasil, L. D., Tejero, J. P., Delgado-Bermejo, J. V., Ribeiro, M. N. (2017). Population structure and genetic variability of the Segureña sheep breed through pedigree analysis and inbreeding effects on growth traits. Small. Rumin. Res 149, 128-133. doi: https://doi.org/10.1016/j.smallrumres.2017.02.009
Buranawit, K., Imboonta, N., Tongsiri, S., Masuda, Y., Phakdeedindan, P. (2025). Investigation of the effect of heat stress on egg production traits in Thai native chickens (Lueng Hang Kao Kabin) as determined by the temperature-humidity index. Poult. Sci 19, 105196. doi: https://doi.org/10.1016/j.psj.2025.105196
Cassell, B. G., Adamec, V., Pearson, R. E. (2003). Effect of incomplete pedigrees on estimates of inbreeding and inbreeding depression for days to first service and summit milk yield in Holsteins and Jerseys. J. Dairy. Sci 86, 2967-2976. doi: https://doi.org/10.3168/jds.S0022-0302(03)73894-6
D’ambrosio, J., Phocas, F., Haffray, P., Bestin, A., Brard-Fudulea, S., Poncet, C., Quillet, E., Dechamp, N., Fraslin, C., Charles, M., Dupont-Nivet, M. (2019). Genome-wide estimates of genetic diversity, inbreeding and effective size of experimental and commercial rainbow trout lines undergoing selective breeding. Genet. Sel. Evol 51, 1-15. doi: https://doi.org/10.1186/s12711-019-0468-4
Desta, T. T., Dessie, T., Bettridge, J., Lynch, S. E., Melese, K., Collins, M., Christley, R. M., Wigley, P., Kaiser, P., Terfa, Z., Mwacharo, J. M. (2013). Signature of artificial selection and ecological landscape on morphological structures of Ethiopian village chickens. Animal. Genetic. Resources 52, 17-29. doi: https://doi.org/10.1017/s2078633613000064
Dudusola, I. O., Oseni, S. O., Adeyemi, E. A. (2019). Modeling the growth curve of Japanese Quail under different nutritional environments. Niger. J. Anim. Sci 21, 53-58.
Fischer, T. M., Van der Werf, J. H. J., Banks, R. G., Ball, A. J. (2004). Description of lamb growth using random regression on field data. Livest. Prod. Sci 89, 175-185. doi: https://doi.org/10.1016/j.livprodsci.2004.02.004
Gowe, R. S., Fairfull, R. W., McMillan, I., Schmidt, G. S. (1993). A strategy for maintaining high fertility and hatchability in a multiple-trait egg stock selection program. Poult. Sci 72, 1433-1448. doi: https://doi.org/10.3382/ps.0721433
Harrison, S. (2017). Evaluating long-term direct and correlated selection response in White Plymouth Rock chickens selected for high or low 8-week body weight. MS.c thesis, University of Nebraska, Lincoln.
Hedrick, P. W., Kalinowski, S. T. (2000). Inbreeding depression in conservation biology. Annu. Rev. Ecol. Syst 31, 139-162. doi: https://doi.org/10.1146/annurev.ecolsys.31.1.139
IBM Corp. (2017). IBM SPSS Statistics for Windows, Version 25.0 [Computer software]. Armonk, NY: IBM Corp.
Jaturasitha, S., Kayan, A., Wicke, M. (2008). Carcass and meat characteristics of male chickens between Thai indigenous compared with improved layer breeds and their crossbred. Arch. Anim. Breed 51, 283-294. doi: https://doi.org/10.5194/AAB-51-283-2008
Jelokhani-Niaraki, S., Ghorbani, S., Esmailkhanian, S. (2021). Estimation of inbreeding depression for economic traits in Esfahan improved native chicken population. J. Anim. Pro 23, 313-324. doi: https://doi.org/10.22059/jap.2021.314496.623576
Jelokhani-Niaraki, S., Ghorbani, S. (in press). Evaluating the effectiveness of the long-term selective breeding program for indigenous chicken breeds. Acta Sci. Anim. Sci.
Lawal, R. A., Al-Atiyat, R. M., Aljumaah, R. S., Silva, P., Mwacharo, J. M., Hanotte, O. (2018). Whole-genome resequencing of red jungle fowl and indigenous village chicken reveal new insights on the genome dynamics of the species. Front. Genet 9: 264. doi: https://doi.org/10.3389/fgene.2018.00264
Lawal, R. A., Hanotte, O. (2021). Domestic chicken diversity: Origin, distribution, and adaptation. Anim. Genet 52, 385-394. doi: https://doi.org/10.1111/age.13091
Lewis, F., Butler, A., Gilbert, L. (2011). A unified approach to model selection using the likelihood ratio test. Methods. Ecol. Evol 2, 155-162. doi: https://doi.org/10.1111/j.2041-210X.2010.00063.x
Magothe, T. M., Okeno, T. O., Muhuyi, W. B., Kahi, A. K. (2012). Indigenous chicken production in Kenya: II. Prospects for research and development. World's. Poult. Sci. J 68, 133-144. doi: https://doi.org/10.1017/S004393391200013X
Meyer, K. (2007). WOMBAT, A tool for mixed model analyses in quantitative genetics by REML. J. Zhejiang. Univ. Sci. B 8, 815-821. doi: https://doi.org/10.1631/jzus.2007.B0815
Miglior, F., Burnside, E. B., Dekkers, J. C. (1995). Nonadditive genetic effects and inbreeding depression for somatic cell counts of Holstein cattle. J. Dairy. Sci 78, 1168-1173. doi: https://doi.org/10.3168/jds.S0022-0302(95)76734-0
Milkias, M., Molla, M., Tilahun, S. (2019). Productive and reproductive performance of indigenous chickens in Gena Bossa District of Dawro Zone, Ethiopia. Int. J. Livest. Prod 10, 24-32. doi: https://doi.org/10.5897/IJLP2018.0551
Nicholas, F.W. (1989). Incorporation of new reproductive technology in genetic improvement program. In Evolution and Animal Breeding. ed. Hill WG and Mackay TFC (Wallingford: CAB International). 203-209.
Padhi, M. K. (2016). Importance of indigenous breeds of chicken for rural economy and their improvements for higher production performance. Scientifica (Cairo) 2604685. doi: https://doi.org/10.1155/2016/2604685
Quinton, M., Smith, C., Goddard, M. E. (1992). Comparison of selection methods at the same level of inbreeding. J. Anim. Sci 70: 1060-1067. doi: https://doi.org/10.2527/1992.7041060x
Radwan, L. M. (2020). Genetic improvement of egg laying traits in Fayoumi chickens bred under conditions of heat stress through selection and gene expression studies. J. Therm. Biol 89, 102546. doi: https://doi.org/10.1016/j.jtherbio.2020.102546
Rusfidra., Tan Marajo, S. D., Heryandi, Y., Oktaveriza, B. (2014). Estimation of inbreeding rate in Kokok Balenggek Chicken (KBC) population under ex-situ conservation. Int. J. Poult. Sci 13, 364-367. doi: https://doi.org/10.3923/ijps.2014.364.367
Sargolzaei, M., Iwaisaki, H., Colleau, J. J. (2006). A tool for monitoring genetic diversity. In proceedings of the 8th World Congress Genetics Applied Livestock, ProBelo Horizonte
Savas, T., Preisinger, R., Röhe, R., Kalm, E., Flock, D. K. (1999). Auswirkungen der Inzucht auf Leistungsmerkmale und deren genetische Parameter bei Legehennen. Arch. Fur. Geflugelkd 63, 246-251.
Schmidt, G. S., Figueiredo, E. A. P. (2005). Selection for reproductive traits in white egg stock using independent culling levels. Braz. J. Poult. Sci 7, 231-235.
Schwarz, G. (1978). Estimating the dimension of a model. Ann. Stat 6, 461-464. doi: https://doi.org/10.1214/aos/1176344136
Selvaggi, M., Dario, C., Peretti, V., Ciotola, F., Carnicella, D., Dario, M. (2010). Inbreeding depression in Leccese sheep. Small. Rumin. Res 89, 42-46. doi: https://doi.org/10.1016/j.smallrumres.2009.12.005
Sewalem, A., Johansson, K., Wilhelmson, M., Lillpers, K. (1999). Inbreeding and inbreeding depression on reproduction and production traits of White Leghorn lines selected for egg production traits. Br. Poult. Sci 40, 203-208. doi: https://doi.org/10.1080/00071669987601
Siebenmorgen, C., Mörlein, J., Strack, M., Tetens, J., Mörlein, D. (2024). Enhancing agro-biodiversity in chicken: a sensory comparison of broths from German local chicken breeds and their crossbreeds. Poult. Sci 103, 103683. doi: https://doi.org/10.1016/j.psj.2024.103683
Stefanetti, V., Mancinelli, A. C., Pascucci, L., Menchetti, L., Castellini, C., Mugnai, C., Fiorilla, E., Miniscalco, B., Chiattelli, D., Franciosini, M. P., Proietti, P. C. (2023). Effect of rearing systems on immune status, stress parameters, intestinal morphology, and mortality in conventional and local chicken breeds. Poult. Sci 102, 103110. doi: https://doi.org/10.1016/j.psj.2023.103110
Szalay, I. T., Lan Phuong, T. N., Barta, I., Bodi, L., Emodi, A., Szentes, K. A., Dong Xuan, K. D. T. (2016). Conservation aspects of meat producing ability and heterosis in crosses of two natively different local Hungarian chicken breeds. Int. J. Poult. Sci 15, 442-447. doi: https://doi.org/10.3923/ijps.2016.442.447
Szwaczkowski, T., Cywa-Benko, K., Wezyk, S. (2003). A note on inbreeding effect on productive and reproductive traits in laying hens. Anim. Sci. Pap. Rep 21, 121-129.
Szwaczkowski, T., Cywa-Benko, K., Wezyk, S. (2004). Curvilinear inbreeding effects on some performance traits in laying hens. J. Appl. Genet 45, 343-345.
Tolone, M., Sardina, M. T., Criscione, A., Lasagna, E., Senczuk, G., Rizzuto, I., Riggio, S., Moscarelli, A., Macaluso, V., Di Gerlando, R., Cassandro, M., Portolano, B., Mastrangelo, S. (2023). High-density single nucleotide polymorphism markers reveal the population structure of 2 local chicken genetic resources. Poult. Sci 102, 102692. doi: https://doi.org/10.1016/j.psj.2023.102692
Tongsiri, S., Jeyaruban, G. M., Hermesch, S., Van Der Werf, J. H. J., Li, L., Chormai, T. (2019). Genetic parameters and inbreeding effects for production traits of Thai native chickens. Asian-Australas. J. Anim. Sci 32, 930-938. doi: https://doi.org/10.5713/ajas.18.0690
Van Wyk, J. B., Fair, M. D., Cloete, S. W. P. (2009). Case study: the effect of inbreeding on the production and reproduction traits in the Elsenburg Dormer sheep stud. Livest. Sci 120, 218-224. doi: https://doi.org/10.1016/j.livsci.2006.10.005
Weigel, K. A. (2001). Controlling inbreeding in modern breeding programs. J. Dairy. Sci 84, E177-184. doi: https://doi.org/10.3168/jds.S0022-0302(01)70213-5
Yadav, A., Jain, A., Sahu, J., Dubey, A., Gadpayle, R., Barwa, D. K., Kumar, V. (2019). A review on the concept of inbreeding and its impact on livestock. Int. J. Fauna. Biol. Stud 6, 23-30.
Zamani, P., Amirabadi-Farahani, M., Aliarabi, H., Malecky, M. (2016). Comparison of different Legendre and B-Spline random regression models to estimate variance components for average birth weight per lambing in Mehraban sheep. Iran. J. Anim. Sci 46, 407-415. doi: https://doi.org/10.22059/ijas.2015.56826
This journal has been conceived as part of the