Morphological characterization of 23 Malus domestica Borkh cultivars from central Spain

Main Article Content

Alberto-Rafael Arnal
Almudena Lázaro
Javier Tardío


The purpose of this work was to morphologically characterize an apple tree collection composed of 67 individuals from 41 accessions belonging to 23 old Spanish apple cultivars (Malus domestica Borkh) alongside 9 reference cultivars. The studied germplasm was collected previously in rural areas of central Spain (Sierra Norte de Madrid and Tagus river basin) and it was analyzed through 67 descriptors mainly from IBPGR and UPOV. We found a very high morphological diversity in the studied old apple cultivars, as 48% of the descriptors (most of them devoted to fruit traits) were significantly different between types of cultivars. In addition, the sample cultivars resulted clearly distinct from reference cultivars in multivariate analysis. In general, no particular structure was found in old cultivars, but a strong differentiation of ‘Agridulce’ and ‘Hojancas’ is reported due to their bigger fruits. Our results support the molecular analysis and call for further analysis of the local apple germplasm and long-term conservation actions.



Article Details

How to Cite
Arnal, A.-R., Lázaro, A. and Tardío, J. (2022) “Morphological characterization of 23 Malus domestica Borkh cultivars from central Spain”, Genetic Resources, 3(6), pp. 22–37. doi: 10.46265/genresj.HJIF8839.
Original Articles

Aceituno-Mata, L (2010). Estudio Etnobotánico y Agroecológico de la Sierra Norte de Madrid. Madrid, Spain. URL:

Aedo, C et al. (1998). “Malus Mill”. In: Flora iberica. Ed. by S Castroviejo. Vol. 6. Madrid, Spain: Royal Botanic Garden, CSIC, pp. 438–441. URL:

Arnal, A (2021). “Watercore in apple landraces (Malus domestica Borkh.) as a quality indicator”. Revista de Ciencias Agrícolas 38(1), pp. 158–165. DOI: DOI:

Arnal, A et al. (2020). “Simple Sequence Repeat Characterisation of Traditional Apple Cultivars (Malus domestica Borkh.) Grown in the Region of Madrid (Central Spain)”. Plant Molecular Biology Reporter 38(4), pp. 1–15. DOI: DOI:

Ban, S H et al. (2014). “Genetic identification of apple cultivars bred in Korea using simple sequence repeat markers”. Horticulture Environment and Biotechnology 55(6), pp. 531–539. DOI: DOI:

Božovi´c, D et al. (2015). “Morphological characterization of autochthonous apple genetic resources in Montenegro”. Erwerbs-Obstbau 58(2), pp. 93–102. DOI: DOI:

Chen, Y and T Lübberstedt (2010). “Molecular basis of trait correlations”. Trends in Plant Science 15(8), pp. 454–461. DOI: DOI:

Comunidad de Madrid (2018). Estrategia para revitalizar los municipios rurales de la Comunidad de Madrid.

Currie, A J et al. (2000). “Quantitative evaluation of apple (Malus × domestica Borkh.) fruit shape by principal component analysis of Fourier descriptors”. Euphytica 111(3), pp. 219–227. DOI:

Dar, J A, A A Wani, and M K Dhar (2015). “Morphological, biochemical and male-meiotic characterization of apple (Malus × domestica Borkh.) germplasm of Kashmir Valley”. Chromosome Botany 10(2), pp. 39–49. DOI: DOI:

De Mendiburu, F (2019). Statistical procedures for agricultural research. Package “agricolae". URL:

Dolker, T et al. (2021). “Phenological and pomological characteristics of native apple (Malus domestica borkh.) cultivars of trans-himalayan ladakh”. India. Defence Life Science Journal 6, pp. 64–69. DOI: DOI:

FAO (2010). Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture. Rome. URL:

FAO (2022). FAOSTAT. URL: (visited on 04/08/2020).

Farrokhi, J et al. (2013). “Evaluation of Iranian native apple (Malus × domestica Borkh.) germplasm using biochemical and morphological characteristics”. Agriculturae Conspectus Scientificus 78(4), pp. 307–313. URL:

Ganopoulos, I et al. (2018). “Phenotypic and molecular characterization of apple (Malus × domestica Borkh.) genetic resources in Greece”. Scientia Agricola 75(6), pp. 509–518. DOI: DOI:

Gaši, F et al. (2011). “Analysis of morphological variability in Bosnia and Herzegovina’s autochthonous apple germplasm”. Journal of Food, Agriculture and Environment 9(3-4), pp. 444–448. DOI:

Hassan, S et al. (2017). “Morphological characterization of apple accessions in Kashmir region”. Plant Archives 17(2), pp. 1071–1077. DOI:

Höfer, M et al. (2014). “Phenotypic evaluation and characterization of a collection of Malus species”. Genetic Resources and Crop Evolution 61(5), pp. 943–964. DOI: DOI:

IBPGR (1982). Descriptors list for apple (Malus). Ed. by Watkins R and Smith RA. International Board for Plant Genetic Resources (IBPGR); Commission of the European Communities (CEC). URL:

Iglesias, I et al. (2009). “Innovación varietal en manzano”. Revista de Fruticultura 1, pp. 13–30. URL:

Karatas, N (2022). “Morphological, sensory and biochemical characteristics of summer apple genotypes”. Brazilian Journal of Biology 82, pp. 1–10. DOI: DOI:

Kiprijanovski, M, T Arsov, and N Saraginovski (2020). “Pomological, quality and organoleptic traits of some autochthonous apple cultivars in Prespa region, North Macedonia”. Acta Horticulturae 1289, pp. 35–42. DOI: DOI:

Király, I, M Ladányi, et al. (2015). “Assessment of diversity in a Hungarian apple gene bank using morphological markers”. Organic Agriculture 5, pp. 143–151. DOI: DOI:

Király, I, R Redeczki, et al. (2012). “Morphological and molecular (SSR) analysis of old apple cultivars”. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 40(1), pp. 269–275. DOI: DOI:

Koutecký, P (2015). “MorphoTools: a set of R functions for morphometric analysis”. Plant Systematics and Evolution 301(4), pp. 1115–1121. DOI: DOI:

Kumar, C et al. (2018). “Morphological and biochemical diversity among the Malus species including indigenous Himalayan wild apples”. Scientia Horticulturae 233, pp. 204–219. DOI: DOI:

Laurens, F (1999). “Review of the current apple breeding programmes in the world: Objectives for scion cultivar improvement”. Acta Horticulturae 484, pp. 163–170. DOI: DOI:

Martinelli, F et al. (2008). “Ancient pomoideae (Malus domestica Borkh. and Pyrus communis L.) cultivars in “appenino toscano”. Caryologia 61(3), pp. 320–331. DOI: DOI:

Migicovsky, Z et al. (2018). “Morphometrics reveals complex and heritable apple leaf shapes”. Frontiers in Plant Science 8, pp. 1–14. DOI: DOI:

Miši´c, P (2002). “Special Breeding of Fruit Trees”. In: Belgrade, Serbia: Institute for research in agriculture ’Serbia’ and Partenon.

Mratini´c, E, Fotiri´c Akši´c, and M (2011). “Evaluation of phenotypic diversity of apple (Malus sp.) germplasm through the principle component analysis”. Genetika 43(2), pp. 331–340. DOI: DOI:

Mratini´c, E, Fotiri´c Akši´c, and M(2012). “Phenotypic diversity of apple (Malus sp.) germplasm in south Serbia”. Brazilian Archives of Biology and Technology 55(3), pp. 349–358. DOI: DOI:

Nei, M (1973). “Analysis of gene diversity in subdivided populations”. Proceedings of the National Academy of Sciences 70(12), pp. 3321–3323. DOI: DOI:

Noiton, D A and P A Alspach (1996). “Founding clones, inbreeding, coancestry, and status number of modern apple cultivars”. Journal of the American Society for Horticultural Science 121(5), pp. 773–782. DOI: DOI:

Özrenk, K et al. (2011). “Pomological features of local apple varieties cultivated in the region of Çatak (Van) and Tatvan (Bitlis)”. Yuzuncu Yıl University Journal of Agricultural Sciences 21(1), pp. 57–63.

Pereira-Lorenzo, S, M Fischer, et al. (2018). “Apple (Malus spp.) Breeding: Present and Future”. In: Advances in Plant Breeding Strategies: Fruits. Ed. by En: Al-Khayri J, Jain SM, and Johnson D V. Springer International Publishing, pp. 3–29. DOI: DOI:

Pereira-Lorenzo, S, A M Ramos-Cabrer, et al. (2003). “Analysis of apple germplasm in northwestern Spain”. Journal of the American Society for Horticultural Science 128(1), pp. 67–84. DOI: DOI:

Pérez-Romero, L F et al. (2015). “Molecular and morphological characterization of local apple cultivars in southern Spain”. Genetics and Molecular Research 14(1), pp. 1487–1501. DOI: DOI:

Pina, A, J Urrestarazu, and P Errea (2014). “Analysis of the genetic diversity of local apple cultivars from mountainous areas from Aragon (Northeastern Spain)”. Scientia Horticulturae 174(1), pp. 1–9. DOI: DOI:

Pırlak, L et al. (2003). “Promising native summer apple (Malus domestica) cultivars from north-eastern Anatolia”. Turkey. New Zealand Journal of Crop and Horticultural Science 31(4), pp. 311–314. DOI: DOI:

Posadas-Herrera, B M et al. (2018). “Phenotypic diversity of apple in Zacatlán, Puebla, México is broad and is given mainly by fruit traits”. Revista Fitotecnia Mexicana 41(1), pp. 49–58. DOI: DOI:

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL:

Ramos-Cabrer, A M, M B Díaz-Hernández, and S Pereira-Lorenzo (2007). “Morphology and microsatellites in Spanish apple collections”. Journal of Horticultural Science & Biotechnology 82(2), pp. 257–265. DOI: DOI:

Reddy, M P, N Sarla, and E A Siddiq (2002). “Inter Simple Sequence Repeat (ISSR) polymorphism and its application in plant breeding”. Euphytica 128(1), pp. 9–17. DOI: DOI:

Royo, J B and R Itoiz (2004). “Evaluation of the discriminance capacity of RAPD, isoenzymes and morphologic markers in apple (Malus × domestica Borkh.) and the congruence among classification”. Genetic Resources and Crop Evolution 51, pp. 153–160. DOI: DOI:

Salki´c, B et al. (2017). “Pomological characteristics of the most represented autochthonous apple cultivars from the area of northeast Bosnia”. Technologia Acta 10(2), pp. 29–33. URL:

Santesteban, L G, C Miranda, and J B Royo (2009). “Evaluación de la diversidad genética y fenotípica retenida en colecciones nucleares de manzano formadas a partir de caracterizaciones agro-morfológicas o moleculares”. Spanish Journal of Agricultural Research 7(3), pp. 572–584. DOI: DOI:

Schneider, C A, W S Rasband, and K W Eliceiri (2012). “NIH Image to ImageJ: 25 years of image analysis”. Nature Methods 9(7), pp. 671–675. DOI: DOI:

Šebek, G (2013). “Autochtonous cultivars of apple from the area of the upper Polimlje”. Agriculture & Forestry 59(3), pp. 67–74.

Sokal, R R and C D Michener (1958). “A Statistical Method for Evaluating Relationships”. University of Kansas Science Bulletin 38, pp. 1409–1448.

Terpó, A (1981). “Malus Mill”. In: Flora Europaea. Ed. by T G Tutin et al. Vol. 2, pp. 66–67. DOI: DOI:

Torchiano, M (2018). Efficient effect size computation. Package “effsize". URL:

UPOV (2005). “Apple (Malus domestica Borkh.). Guidelines for the conduct of tests for distinctness, uniformity and stability”. In: Geneva: International Union for the Protection of New Varieties of Plants (UPOV), pp. 25–25. URL:

Urbina, V and J Dalmases (2014). Guía de caracterización de las accesiones de manzano. Lleida, Spain.

Urrestarazu, J et al. (2012). “Genetic diversity and structure of local apple cultivars from Northeastern Spain assessed by microsatellite markers”. Tree Genetics & Genomes 8(6), pp. 1163–1180. DOI: DOI:

Wagner, I et al. (2014). “Hybridization and Genetic Diversity in Wild Apple (Malus sylvestris (L.) Mill.) from Various Regions in Germany and from Luxembourg”. Silvae Genetica 63(3), pp. 81–94. DOI: DOI:

Watts, S, Z Migicovsky, and K A Mcclure (2021). Quantifying apple diversity: A phenomic characterization of Canada’s Apple Biodiversity Collection. Plants, People, Planet ppp3. DOI: DOI:

Wei, T and V Simko (2017). R package “corrplot”: Visualization of a Correlation Matrix. URL:

Zovko, M, D Vego, and M Zovko (2010). “Pomological properties of autochthkonous cultivars in the area Žepˇca”. Glasnik Zastite Bilja(1), pp. 54–74. URL: