The role of tomato wild relatives in breeding disease-free varieties

Main Article Content

Hamid Khazaei
Adithya Madduri


Cultivated tomato (Solanum lycopersicum) is one of the most economically important and widely grown vegetable crops worldwide. However, tomato plants are often affected by biotic and abiotic stresses that reduce yield and affect fruit quality. Phenotypic diversity is evident in cultivated tomatoes, particularly for horticultural traits, but genetic diversity is rather narrow. Major disease resistance genes for different pathogens such as viruses, fungi, bacteria and nematodes are mainly derived from wild tomato species and introgressed into cultivated tomatoes. Here, we list the major disease and insect-pest resistance genes identified in S. pimpinellifolium, S. habrochaites, S. peruvianum, S. chilense, S. pennellii, S. galapagense, S. arcanum and S. neorickii with perspective on the gap between current knowledge on tomato wild relatives and the knowledge that is needed.



Article Details

How to Cite
Khazaei, H. and Madduri, A. (2022) “The role of tomato wild relatives in breeding disease-free varieties”, Genetic Resources, 3(6), pp. 64–73. doi: 10.46265/genresj.PSES6766.
Short Communications

Adhikari, P et al. (2020). “Advances and challenges in bacterial spot resistance breeding in tomato (Solanum lycopersicum L.)” Int. J. Mol. Sci 21, 1734. DOI: DOI:

Anderson, T A et al. (2021). “Cryptic introgressions contribute to transgressive segregation for early blight resistance in tomato”. Theor. Appl. Genet 134, pp. 2561–2575. DOI: DOI:

Astua-Monge, G et al. (2000). “Resistance of tomato and pepper to T3 strains of Xanthomonas campestris pv. vesicatoria is specified by a plant-inducible avirulence gene”. Mol. Plant-Microbe Interact 13, pp. 911–921. DOI: DOI:

AVRDC (1994). AVRDC 1993 Progress Report. Shanhua, Tainan, Taiwan: Asian Vegetable Research and Development Center, pp. 201–203. DOI:

Bai, Y, R van der Hulst, et al. (2005). “Tomato defense to Oldium neolycopersici: dominant OI genes confer isolate-dependent resistance via a different mechanism than recessive oI-2”. Mol. Plant Microbe. Interact 18(4), pp. 354–362. DOI: doi: DOI:

Bai, Y, C Kissoudis, et al. (2018). “Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress”. Plant J 93, pp. 781–793. DOI: DOI:

Bailey, D (1950). “Studies in racial trends and constancy in Cladosporium fulvum Cooke”. Can.J. Res 28, pp. 535–565. DOI: DOI:

Ballester, A - R et al. (2016). “Identification of loci affecting accumulation of secondary metabolites in tomato fruit of a Solanum lycopersicum × Solanum chmielewskii introgression line population”. Front Plant. Sci 7, 1428. DOI: DOI:

Beek, J G van der, Pet G, and P Lindhout (1994). “Resistance to powdery mildew (Oidium lycopersicum) in Lycopersicon hirsutum is controlled by an incompletely-dominant gene Ol-1 on chromosome 6”. Theor. Appl. Genetics 89, pp. 467–473. DOI: DOI:

Bohra, A et al. (2021). “Reap the crop wild relatives for breeding future crops”. Trends Biotech 40, pp. 412–431. DOI: DOI:

Bolger, A et al. (2014). “The genome of the stress-tolerant wild tomato species Solanum pennellii”. Nat Genet 46, pp. 1034–1038. DOI: DOI:

Bonde, R and E F Murphy (1952). “Resistance of certain tomato varieties and crosses to late blight”. Maine Agric. Exp. Stn. Bull 497, pp. 5–15.

Catanzariti, A M, G T Lim, and D A Jones (2015). “The tomato I-3 gene: a novel gene for resistance to Fusarium wilt disease”. New Phytol 207, pp. 106–118. DOI: DOI:

Chetelat, R T et al. (2019). “Introgression lines of Solanum sitiens, a wild nightshade of the Atacama Desert, in the genome of cultivated tomato”. Plant J 100, pp. 836–850. DOI: DOI:

Chitwood-Brown, J et al. (2021). “Breeding for resistance to fusarium wilt of tomato: A Review”. Genes 12, pp. 1673–1673. DOI: DOI:

Chunwongse, J et al. (1997). “High-resolution genetic map of the Lv resistance locus in tomato”. Theor. Appl. Genet 95, pp. 220–223. DOI: DOI:

Ciccarese, F et al. (1998). “Occurrence and inheritance of resistance to powdery mildew (Oidium lycopersici) in Lycopersicon species”. Plant Pathol 47, pp. 417–419. DOI: DOI:

Coaker, G L and D M Francis (2004). “Mapping, genetic effects, and epistatic interaction of two bacterial canker resistance QTLs from Lycopersicon hirsutum”. Theor. Appl. Genet 108, pp. 1047–1055. DOI: DOI:

Crinò, P et al. (1995). “Breeding for resistance to bacterial canker in Italian tomatoes for fresh market”. Acta Hort 412, pp. 539–545. DOI: DOI:

Darwin, S, S Knapp, and I Peralta (2003). “Taxonomy of tomatoes in the Galápagos Islands: Native and introduced species of Solanum section Lycopersicon (Solanaceae)”. System Biodivers 1, pp. 29–53. DOI: DOI:

Davis, J et al. (2009). “Mapping of loci from Solanum lycopersicoides conferring resistance or susceptibility to Botrytis cinerea in tomato”. Theor. Appl. Genet 119, pp. 305–314. DOI: DOI:

Dickinson, M, D A Jones, and J D G Jones (1993). “Close linkage between the Cf-2/Cf-5 and Mi resistance loci in tomato”. Mol. Plant-Microbe Interact 6, pp. 341–347. DOI: DOI:

Diwan, N et al. (1999). “Mapping of Ve in tomato: a gene conferring resistance to the broad-spectrum pathogen, Verticillium dahlia race 1”. Theor. Appl. Genet 98, pp. 315–319. DOI: DOI:

Dixon, M S et al. (1998). “The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number”. Plant Cell 10, pp. 1915–1925. DOI: DOI:

Ebert, A W and R Schafleitner (2015). “Utilization of wild relatives in the breeding of tomato and other major vegetables”. In: Crop Wild Relatives and Climate Change. Ed. by R Redden et al. Hoboken, NJ, USA: John Wiley & Sons, Inc, pp. 141–172. DOI: DOI:

Finkers, R, Y Bai, et al. (2008). “Quantitative resistance to Botrytis cinerea from Solanum neorickii”. Euphytica 159, pp. 83–92. DOI: DOI:

Finkers, R, P van den Berg, et al. (2007). “Three QTLs for Botrytis cinerea resistance in tomato”. Theor. Appl. Genet 114, pp. 585–593. DOI: DOI:

Finkers, R, A W van Heusden, et al. (2007). “The construction of a Solanum habrochaites LYC4 introgression line population and the identification of QTLs for resistance to Botrytis cinerea”. Theor. Appl. Genet 114, pp. 1071–1080. DOI: DOI:

Finlay, K W (1953). “Inheritance of spotted wilt resistance in tomato. II.Five genes controlling spotted wilt resistance in four tomato types”. Aust. J. Biol. Sci 6, pp. 153–163. DOI:

Firdaus, S et al. (2013). “Identification and QTL mapping of whitefly resistance components in Solanum galapagense”. Theor. Appl. Genet 126, pp. 1487–1501. DOI: DOI:

Foolad, M R, H L Merk, et al. (2006). “Identification of new sources of late blight resistance in tomato and mapping of a new resistance gene”. In: 21st Annual Tomato Disease Workshop, North Carolina State University, Fletcher, NC, USA, pp. 4–7.

Foolad, M R and D R Panthee (2012). “Marker-assisted selection in tomato breeding”. Crit. Rev. Plant Sci 31, pp. 93–123. DOI: DOI:

Forster, R L and E Echandi (1972). “Relation of age of plants, temperature, and inoculum concentration to bacterial canker development in resistant and susceptible”. Phytopathology 63, pp. 773–777. DOI:

Francis, D M et al. (2001). “Resistance to bacterial canker in tomato (Lycopersicon hirsutum LA407) and its progeny derived from crosses to L. esculentum”. Plant Dis 85, pp. 1171–1176. DOI: DOI:

Gallegly, M E and M E Marvel (1955). “Inheritance of resistance to tomato race-0 of Phytophthora infestans”. J. Phytopathol 45, pp. 103–109.

Ganal, M W and S D Tanksley (1996). “Recombination around the Tm2a and Mi resistance genes in different crosses of Lycopersicon peruvianum”. Theor. Appl. Genet 92, pp. 101–108. DOI: DOI:

Gao, L, I Gonda, and H Sun (2019). “The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor”. Nat. Genet 51, pp. 1044–1051. DOI: DOI:

Gill, U et al. (2019). “Ty-6, a major begomovirus resistance gene on chromosome 10, is effective against tomato yellow leaf curl virus and tomato mottle virus”. Theor. Appl. Genet 132, pp. 1543–1554. DOI: DOI:

Giordano, L D et al. (2000). “‘Viradoro’: A tospovirus-resistant processing tomato cultivar adapted to tropical environments”. Hortscience 35, pp. 1368–1370. DOI: DOI:

Gonzalez-Cendales, Y et al. (2016). “Identification of I-7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes”. Mol. Plant. Pathol 17, pp. 448–463. DOI: DOI:

Gramazio, P et al. (2020). “Morphoagronomic characterization and whole-genome resequencing of eight highly diverse wild and weedy S. pimpinellifolium and S. lycopersicum var. cerasiforme accessions used for the first interspecific tomato MAGIC population”. Hort. Res 7, 174. DOI: DOI:

Hanson, P, S Green, and G Kuo (2006). “Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato”. Tomato Genet. Coop. Rep 56, pp. 17–18. URL:

Hanson, P, S - F Lu, et al. (2016). “Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato”. Sci. Hort 201, pp. 346–354. DOI: DOI:

Have, A ten et al. (2007). “Partial stem and leaf resistance against the fungal pathogen Botrytis cinerea in wild relatives of tomato”. Eur. J. Plant. Pathol 117, pp. 153–166. DOI: DOI:

Huang, C C et al. (2000). “Characterization and mapping of resistance to Oidium lycopersicum in two Lycopersicon hirsutum accessions: evidence for close linkage of two Ol-genes on chromosome 6 of tomato”. Heredity 85, pp. 511–520. DOI: DOI:

Hutton, S F, J W Scott, and D J Schuster (2012). “Recessive resistance to tomato yellow leaf curl virus from the tomato cultivar Tyking is located in the same region as Ty-5 on chromosome 4”. HortScience 47, pp. 324–327. DOI: DOI:

Ji, Y, D J Schuster, and J W Scott (2007). “Ty-3, a begomovirus resistance locus near the tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato”. Mol. Breed 20, pp. 271–284. DOI: DOI:

Ji, Y, J W Scott, et al. (2009). “Molecular mapping of Ty-4, a new tomato yellow leaf curl virus resistance locus on chromosome 3 of tomato”. J. Am. Soc. Hortic. Sci 134, pp. 281–288. DOI: DOI:

Kanagawa Agricultural Technology Center (1999). Online report (accessed 23 June 2022). URL:

Leckie, B M, D A D’Ambrosio, et al. (2016). “Differential and synergistic functionality of acylsugars in suppressing oviposition by insect herbivores”. PLoS ONE 11(4), e0153345. DOI: DOI:

Leckie, B M, D M De Jong, and M A Mutschler (2012). “Quantitative trait loci increasing acylsugars in tomato breeding lines and their impacts on silverleaf whiteflies”. Mol. Breed 30, pp. 1621–1634. DOI: DOI:

Lough, R C (2003). Inheritance of tomato late blight resistance in Lycopersicon hirsutum LA1033. NC, USA. URL:

Ortiz, R (2015). “The importance of crop wild relatives, diversity, and genetic potential for adaptation to abiotic stress-prone environments”. In: Crop Wild Relatives and Climate Change. Ed. by Redden R et al. Hoboken, NJ, USA: John Wiley & Sons, Inc, pp. 80–87. DOI: DOI:

Parlevliet, J E (2002). “Durability of resistance against fungal, bacterial and viral pathogens; present situation”. Euphytica 124, pp. 147–156. DOI: DOI:

Pelham, J (1966). “Resistance in tomato to tobacco mosaic virus”. Euphytica 15, pp. 258–267. DOI: DOI:

Pitblado, R E and E A Kerr (1980). “Resistance to bacterial speck (Pseudomonas tomato) in tomato”. Acta Hort 100, pp. 379–382. DOI: DOI:

Powell, A F et al. (2022). “A Solanum lycopersicoides reference genome facilitates insights into tomato specialized metabolism and immunity”. Plant J 110, pp. 1791–1810. DOI: DOI:

Qi, S et al. (2021). “Natural resources resistance to tomato spotted wilt virus (TSWV) in tomato (Solanum lycopersicum)”. Int. J. Mol. Sci 22, 10978. DOI: DOI:

Rakha, M, P Hanson, and S Ramasamy (2017). “Identification of resistance to Bemisia tabaci Genn. in closely related wild relatives of cultivated tomato based on trichome type analysis and choice and no-choice assays”. Genet. Resour. Crop. Evol 64, pp. 247–260. DOI: DOI:

Ramírez-Ojeda, G et al. (2021). “Edaphoclimatic descriptors of wild tomato species (Solanum Sect. Lycopersicon) and closely related species (Solanum Sect. Juglandifolia and Sect. Lycopersicoides) in South America”. Front. Genet 12, 748979. DOI: DOI:

Razali, R et al. (2018). “The genome sequence of the wild tomato Solanum pimpinellifolium provides insights into salinity tolerance”. Front. Plant. Sci 9, 1402. DOI: DOI:

Robbins, M D et al. (2009). “Characterization of hypersensitive resistance to bacterial spot race T3 (Xanthomonas perforans) from tomato accession PI 128216”. Phytopathology 99, pp. 1037–1044. DOI: DOI:

Roldan, M V G et al. (2017). “Natural and induced loss of function mutations in SlMBP21 MADS-box gene led to jointless-2 phenotype in tomato”. Sci. Rep 7, 4402. DOI: DOI:

Roselló, S, M José Díez, and F Nuez (1998). “Genetics of Tomato spotted wilt virus resistance coming from Lycopersicon peruvianum”. Eur. J. Plant. Pathol 104, pp. 499–509. DOI: DOI:

Rosello, S et al. (2001). “Resistance to tomato spotted wilt virus introgressed from Lycopersicon peruvianum in line UPV 1 may be allelic to Sw-5 and can be used to enhance the resistance of hybrids cultivars”. Euphytica 119, pp. 357–367. DOI: DOI:

Santegoets, J et al. (2021). “A novel non-trichome based whitefly resistance QTL in Solanum galapagense”. Euphytica 217, 43. DOI: DOI:

El-Sappah, A H et al. (2019). “Tomato natural resistance genes in controlling the root-knot nematode”. Genes 10, pp. 925–925. DOI: DOI:

Schafleitner, R et al. (2022). Manipulating fruit size in tomato by gene editing. Asian Solanaceous Round Table (ASRT-4), 11-13 May 2022. Bangalore, India.

Schilmiller, A L, A L Charbonneau, and R L Last (2012). “Identification of a BAHD acetyltransferase that produces protective acyl sugars in tomato trichomes”. Proc. Natl. Acad. Sci. U.S.A 109, pp. 16377–16382. DOI: DOI:

Schmidt, M H W et al. (2017). “De novo assembly of a new Solanum pennellii accession using nanopore sequencing”. Plant Cell 29, pp. 2336–2348. DOI: DOI:

Scott, J W and R G Gardner (2007). “Breeding for resistance to fungal pathogens”. In: Genetic Improvement of Solanaceous Crops. Tomato. Ed. by M K Razdan and A K Mattoo. Vol. 2, pp. 421–456. DOI: DOI:

Sen, Y, M J Manrique, et al. (2021). “Qtl Mapping of Clavibacter Michiganensis Subsp. Michiganensis (cmm) Resistance Originating from Solanum Pimpinellifolium g1.1554. PREPRINT (Version 1)”. DOI: DOI:

Sen, Y, Z Feng, et al. (2013). “Screening for new sources of resistance to Clavibacter michiganensis subsp. michiganensis (Cmm) in tomato”. Euphytica 190, pp. 309–317. DOI: DOI:

Smith, P G (1944). “Embryo culture of a tomato species hybrid”. Proc. Am. Soc. Hort. Sci 44, pp. 413–416.

Soost, R K (1963). “Hybrid tomato resistant to tobacco mosaic virus”. J. Hered 54, pp. 241–244. DOI: DOI:

Sotirova, V, N Bogatsevska, and L Stamova (1994). “Sources of resistance to bacterial diseases in tomato wild species”. Acta Hort 376, pp. 353–360. DOI: DOI:

Stall, R and J Walter (1965). “Selection and inheritance of resistance in tomato to isolates of races 1 and 2 of Fusarium wilt organism”. Phytopathology 55, pp. 1213–1215.

Stam, R et al. (2019). “The de novo reference genome and transcriptome assemblies of the wild tomato species Solanum chilense highlights birth and death of NLR genes between tomato species”. G3 9, pp. 3933–3941. DOI: DOI:

Stevens, M R, S J Scott, and R C Gergerich (1994). “Evaluation of seven Lycopersicon species for resistance to tomato spotted wilt virus (TVSW)”. Euphytica 80, pp. 79–84. DOI: DOI:

Stevens, M and C M Rick (1986). “Genetics and breeding”. In: The Tomato Crop. A Scientific Basis for Improvement. Ed. by Atherton JG and Rudich J. Chapman & Hall, pp. 35–109. DOI:

Tanksley, S D and J C Nelson (1996). “Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines”. Theor. Appl. Genet 92, pp. 191–203. DOI: DOI:

Tourrette, E, M Falque, and O C Martin (2021). “Enhancing backcross programs through increased recombination”. Genet. Sel. Evol 53, 25. DOI: DOI:

Vakalounakis, D J et al. (1997). “Linkage between Frl (Fusarium oxysporum f sp radicis-lycopersici resistance) and Tm-2 (tobacco mosaic virus resistance-2) loci in tomato (Lycopersicon esculentum)”. Ann. Appl. Biol 130, pp. 319–323. DOI: DOI:

Vendemiatti, E et al. (2021). “Introgression of type-IV glandular trichomes from Solanum galapagense to cultivated tomato reveals genetic complexity for the development of acylsugar-based insect resistance. bioRxiv 2021.06.18.448858”. DOI: DOI:

Verlaan, M G et al. (2013). “The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases”. PLoS Genet 9 (3), e1003399. DOI: DOI:

Vu, T V et al. (2020). “Precision genome engineering for the breeding of tomatoes: recent progress and future perspectives”. Front. Genome Ed 2, 612137. DOI: DOI:

Wang, J F et al. (2013). “Identification of major QTLs associated with stable resistance of tomato cultivar ‘Hawaii 7996’ to Ralstonia solanacearum”. Euphytica 190, pp. 241–252. DOI: DOI:

Wang, X et al. (2020). “Genome of Solanum pimpinellifolium provides insights into structural variants during tomato breeding”. Nat. Commun 11, 5817. DOI: DOI:

Yan, Z et al. (2018). “Resistance to tomato yellow leaf curl virus in tomato germplasm”. Front. Plant Sci 9, 1198. DOI: DOI:

Yordanov, M, L Stamova, and Z Stoyanova (1975). “Leveillula taurica resistance in the tomato”. TGC Rep 25, pp. 24–24.

Yu, Z H et al. (1995). “Genomic localization of tomato genes that control a hypersensitive reaction to Xanthomonas-campestris pv. vesicatoria (Doidge) dye”. Genetics 141, pp. 675–682. DOI: DOI:

Zamir, D et al. (1994). “Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, TY-1”. Theor. Appl. Genet 88, pp. 141–146. DOI: DOI:

Zhu, M et al. (2017). “The intracellular immune receptor sw-5b confers broad-spectrum resistance to tospoviruses through recognition of a conserved 21-amino acid viral effector epitope”. Plant Cell 29, pp. 2214–2232. DOI: DOI:

Zsögön, A et al. (2018). “De novo domestication of wild tomato using genome editing”. Nat. Biotechnol 36, pp. 1211–1216. DOI: DOI: