Biochemical characteristics of bread wheat genotypes related to SSR markers in moisture stress conditions

Main Article Content

Fatemeh Bavandpouri
https://orcid.org/0000-0001-5516-8597
Ezatollah Farshadfar
Kianoosh Cheghamirza
https://orcid.org/0000-0002-0967-5149
Mohsen Farshadfar
https://orcid.org/0000-0001-6845-9457

Abstract

Wheat is one of the oldest and most important staple crops worldwide, facing various biotic and abiotic stresses that affect its productivity. This study examines microsatellite markers related to grain yield, biochemical traits and drought tolerance indices in 25 wheat genotypes. The experiment was set up based on the randomized complete block design with three replications under rainfed and irrigated conditions. Combined variance analysis revealed significant differences among genotypes. Principal component analysis identified drought-tolerant genotypes (6, 10, 15, 18, 13, Pishtaz) linked to superior yield, stress indices, and antioxidant activity under rainfed conditions. Polymorphic SSR markers revealed key associations: XCFD168 with catalase, XGWM350 with ascorbic peroxidase (both under rainfed conditions), and XGWM136 with yield in irrigated conditions and multiple stress indices. Marker XGWM410(a1) was associated with yield in both environments, catalase in irrigated conditions, and multiple indices. Marker XGWM2(a2) was linked to yield in irrigated conditions, ascorbic peroxidase in rainfed conditions, and abiotic tolerance index, while XGWM124(a2) was associated with yield, superoxide dismutase in rainfed conditions, and multiple indices. The study identifies these genotypes as top candidates for drought tolerance due to their high yield and optimal biochemical responses under stress. Furthermore, key molecular markers – XCFD168, XGWM350, XGWM136, XGWM124(a2), XGWM410(a1), and XGWM2(a2) – associated with biochemical and yield traits are prioritized for marker-assisted selection to enhance drought tolerance and yield stability in breeding programmes.

 

 

Article Details

How to Cite
Bavandpouri, F., Farshadfar, E., Cheghamirza, K. and Farshadfar, M. (2025) “Biochemical characteristics of bread wheat genotypes related to SSR markers in moisture stress conditions”, Genetic Resources, 6(12), pp. 171–193. doi: 10.46265/genresj.SLTA9371.
Section
Original Articles
References

Ahmed, H. G. M. D., Kashif, M., Rashid, M. A. R., Sajjad, M., and Zeng, Y. (2020). Genome wide diversity in bread wheat evaluated by SSR markers. International Journal of Agriculture & Biology 24, 263–272. doi: https://doi.org/10.17957/IJAB/15.1433

Ahmed, Sh. F., Ahmed, J. U., Hasan, M., and Mohi-Ud-Din, M. (2023). Assessment of genetic variation among wheat genotypes for drought tolerance utilizing microsatellite markers and morpho-physiological characteristics. Heliyon 9, e21629. doi: https://doi.org/10.1016/j.heliyon. 2023.e21629 DOI: https://doi.org/10.1016/j.heliyon.2023.e21629

Ahmed, H. Gh. M. D., Yang, T., Akram, M. I., Iqbal, R., AlGhamdi, A. A., and Al Farraj, D. A. (2024). Molecular marker based analysis of allelic variation in the spring wheat genome. Genetic Resources and Crop Evolution 1–17. doi: https://doi.org/10.1007/s10722-024-02274-y DOI: https://doi.org/10.1007/s10722-024-02274-y

Al-Ashkar, I., Alderfasi, A., Romdhane, W. B., Seleiman, M. F., El-Said, R. A., and Al-Doss, A. (2020). Morphological and genetic diversity within salt tolerance detection in eighteen wheat genotypes. Plants 9(287), 1–21. doi: https://doi.org/10.3390/plants9030287 DOI: https://doi.org/10.3390/plants9030287

Al-Naggar, A. M. M., El-Shafi, M. A. E. M. A., El-Shal, M. H., and Anany, A. H. (2020). Evaluation of Egyptian wheat landraces (Triticum aestivum L.) for drought tolerance, agronomic, grain yield and quality traits. Plant Archives 20(1), 3487–3504. url: https://www.researchgate.net/publication/340284945

Altintas, S., Toklu, F., Kafkas, S., Kilian, B., Brandolini, A., and Ozkan, H. (2008). Estimating genetic diversity in durum and bread wheat cultivars from turkey using AFLP and SAMPL markers. Plant breeding 127, 9–14. doi: https://doi.org/10.1111/j.1439-0523.2007.01424.x DOI: https://doi.org/10.1111/j.1439-0523.2007.01424.x

Amalova, A., Griffiths, S., Abugalieva, S., and Turuspekov, Y. (2024). Genome-wide association study of yield-related traits in a nested association mapping population grown in Kazakhstan. Agronomy 14, 1848. doi: https://doi.org/10.3390/agronomy14081848 DOI: https://doi.org/10.3390/agronomy14081848

Amare, A. (2023). Genetic variability, correlation and path coefficient analysis of bread wheat (Triticum aestivum L.) genotypes under irrigation in Raya Azebo district, south Tigray. International Journal of Novel Research in Interdisciplinary Studies 10(6), 1–6. doi: https://doi.org/10.5281/zenodo.10074538

Anderson, J. A., Churchill, G. A., Autrique, J. E., Tanksley, S. D., and Sorrells M. E. (1993). Optimizing parental selection for genetic linkage maps. Genome 36(1), 181–186. doi: https://doi.org/10.1139/g93-024 DOI: https://doi.org/10.1139/g93-024

Bates, L., Waldren, R., and Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil 39, 205–207. doi: https://doi.org/10.1007/BF00018060 DOI: https://doi.org/10.1007/BF00018060

Batool, N., Ilyas, N., Shahzad, A., Hauser, B. A., and Arshad, M. (2018). Quantitative trait loci (QTLs) mapping for salt stress tolerance in wheat at germination stage. Pakistan Journal of Agricultural Sciences 55(1), 47–55. doi: https://doi.org/10.21162/PAKJAS/18.5426 DOI: https://doi.org/10.21162/PAKJAS/18.5426

Bavandpouri, F., Farshadfar, E., Cheghamirza, K., Farshadfar, M., Bihamta, M. R., Mahdavi, A. M., and Jelodar, N. B. (2025). Identification of molecular markers associated with genomic regions controlling agronomic traits in bread wheat genotypes under different moisture conditions. Plant molecular biology reporter 43, 631-651. doi: https://doi.org/10.1007/s11105-024-01494-x DOI: https://doi.org/10.1007/s11105-024-01494-x

Beauchamp, C., and Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44, 276–287. doi: https://doi.org/10.1016/0003-2697(71)90370-8 DOI: https://doi.org/10.1016/0003-2697(71)90370-8

Bouslama, M., and Schapaugh, W. (1984). Stress tolerance in soybeans. I. evaluation of three screening techniques for heat and drought tolerance. Crop Science 24, 933–937. doi: https://doi.org/10.2135/cropsci1984.0011183X002400050026x DOI: https://doi.org/10.2135/cropsci1984.0011183X002400050026x

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein Dye binding. Analytical Biochemistry 72, 248–254. doi: https://doi.org/10.1006/abio.1976.9999 DOI: https://doi.org/10.1006/abio.1976.9999

Budak, H., Kanter, M., and Kurtoglu, K. Y. (2013). Drought tolerance in modern and wild wheat. The Scientific World Journal 15(2013), 548246. doi: https://doi.org/10.1155/2013/548246 DOI: https://doi.org/10.1155/2013/548246

Chance, B., and Maehly A. C. (1995). Assay of catalase and peroxidase. In: Culowic SP, & Kaplan NO, eds. Methods in enzymology, Vol 2. New York: Academic Press Inc., 764–765.

Choudhary, R. C., Sharma, N. K., Kumar, R., and Kumar, M. (2016). SSR-based genetic diversity assessment among hexaploid wheat (Triticum aestivum L.) cultivars. Indian Journal of Plant Genetic Resources 29(2), 137–143. doi: https://doi.org/10.5958/0976-1926.2016.00019.X DOI: https://doi.org/10.5958/0976-1926.2016.00019.X

Doyle, J. J., and Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19, 11–15.

Dukamo, B. H., Gedebo, A., Tesfaye, B., and Degu, H. D. (2023). Genetic diversity of Ethiopian durum wheat (T. turgidum subsp. Durum) landraces under water stressed and non-stressed conditions. Heliyon 9(e18359), 1–17. doi: https://doi.org/10.1016/j.heliyon.2023.e18359 DOI: https://doi.org/10.1016/j.heliyon.2023.e18359

El-demery, S. M. M., Bakry, B. A., Younis, A. E-S. M., Sayed, M. A., and Abdellatif, K. F. (2022). QTL analysis of grain yield-related traits for terminal heat stress tolerance in wheat using SSR markers. Pakistan Journal of Biological Sciences 25(6), 516–530. doi: https://doi.org/10.3923/pjbs.2022.516.530 DOI: https://doi.org/10.3923/pjbs.2022.516.530

Ellegren, H. (2004). Microsatellites: simple sequences with complex evolution. Nature Reviews Genetics 5(6), 435–445. doi: https://doi.org/10.1038/nrg1348 DOI: https://doi.org/10.1038/nrg1348

El-Rawy, M. A., and Hassan, M. I. (2021). Assessment of genetic diversity in durum and bread wheat genotypes based on drought tolerance and SSR markers. Plant Breeding and Biotechnology 9(2), 89–103. doi: https://doi.org/10.9787/PBB.2021.9.2.89 DOI: https://doi.org/10.9787/PBB.2021.9.2.89

Emre, I., Ozgur, T., Fatma, A. T., and Muzaffer, T. (2011). Determination of tolerance level of some wheat genotypes to post-anthesis drought. Turkish Journal of Field Crops 19(1), 59–63.

Farshadfar, E. (2010). New topics in biometric genetics. Islamic Azad University publications, 722p.

Farshadfar, M. (2023). Molecular plant breeding. Payam Noor University press, 424p.

Faysal, A. S. M., Ali, L., Azam, M. G., Sarker, U., Ercisli, S., Golokhvast, K. S., and Marc, R. A. (2022). Genetic variability, character association, and path coefficient analysis in transplant Aman rice genotypes. Plants 11, 2952. doi: https://doi.org/10.3390/plants11212952 DOI: https://doi.org/10.3390/plants11212952

Feltaous, Y. M. (2019). Genetic diversity among some Egyptian bread wheat cultivars based on morphological characters and SSR markers. Assiut Journal of Agricultural Sciences 50(4), 35–50. doi: https://doi.org/10.21608/ajas.2020.70069 DOI: https://doi.org/10.21608/ajas.2020.70069

Fernandez, G. C. (1992). Effective selection criteria for assessing plant stress tolerance. Proceedings of the international symposium on adaptation of vegetables and other food crops in temperature and water stress, AVRDC publication, Tainan, Taiwan, 257–270.

Firouzian, A., Shafeinia, A., Ghaffary, S. M. T., Mohammadi, V., and Sadat, S. (2023). Terminal heat tolerance in bread wheat determined by agronomical traits and SSR markers. Journal of Plant Growth Regulation 42(3), 1–12. doi: https://doi.org/10.1007/s00344-022-10680-8 DOI: https://doi.org/10.1007/s00344-022-10680-8

Fischer, R., and Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. grain yield responses. Crop and Pasture Science 29, 897–912. doi: https://doi.org/10.1071/AR9780897 DOI: https://doi.org/10.1071/AR9780897

Galal, A. A., Safhi, F. A., El-Hity, M. A., Kamara, M. M., El-Din, E. M. G., Rehan, M., Farid, M., Behiry, S. I., El-Soda, M., and Mansour, E. (2023). Molecular genetic diversity of local and exotic durum wheat genotypes and their combining ability for agronomic traits under water deficit and well-watered conditions. Life 13(2293), 1–20. doi: https://doi.org/10.3390/life13122293 DOI: https://doi.org/10.3390/life13122293

Giovenali, G., Kuzmanovi´c, L., Capoccioni, A., and Ceoloni, C. (2023). The response of chromosomally engineered durum wheat-Thinopyrum ponticum recombinant lines to the application of heat and water-deficit stresses: effects on physiological, biochemical and yield-related traits. Plants 12(704), 1–29. doi: https://doi.org/10.3390/plants12040704 DOI: https://doi.org/10.3390/plants12040704

Gupta, A. K., Agrawal, M., Yadav, H., Mishra, G., Gupta, R., Singh, A., Katiyar, D., Singh, P., and Srivastava A. (2024). Drought stress and its tolerance mechanism in wheat. International Journal Environment and Climate Chang 14(1), 529–544. url: https://doi.org/10.9734/ijecc/2024/v14i13866 DOI: https://doi.org/10.9734/ijecc/2024/v14i13866

Halder, T., Liu, H., Chen, Y., Yan, G., and Siddique, K. H. M. (2023). Chromosome groups 5, 6 and 7 harbor major quantitative trait loci controlling root traits in bread wheat (Triticum aestivum L.). Frontiers in Plant Science 14, 1092992. doi: https://doi.org/10.3389/fpls.2023.1092992 DOI: https://doi.org/10.3389/fpls.2023.1092992

Haque, M. Sh., Saha, N. R., Islam, M. T., Islam, M. M., Kwon, SJ., Roy, S. K., and Woo, SH. (2020). Screening for drought tolerance in wheat genotypes by morphological and SSR markers. Journal of Crop Science and Biotechnology 1-14. doi: https://doi.org/10.1007/s12892-020-00036-7 DOI: https://doi.org/10.1007/s12892-020-00036-7

Hassan M. Z, Hasanuzzaman, M., Uddin, M. J., Alomgir, M. B., Akter, M. S., Mohanto, A. Ch., and Kayess, M. O. (2025). Assessing genetic diversity and population structure of f4:f5 wheat genotypes using morphological and microsatellite markers under heat stress. Discover Agriculture 3: 14. doi: https://doi.org/10.1007/s44279-025-00161-3 DOI: https://doi.org/10.1007/s44279-025-00161-3

Heath, R. L., and Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125, 189–198. doi: https://doi.org/10.1016/0003-9861(68)90654-1 DOI: https://doi.org/10.1016/0003-9861(68)90654-1

Heidari, B., Barjoyifard, D., Mazal-Mazraei, T., and Govindan, V. (2024). Assessment of genetic biodiversity and association of micronutrients and agronomic traits using microsatellites and staining methods which accelerates high micronutrients variety selections within different wheat groups. Scientific Reports 14, 27419. doi: https://doi.org/10.1038/s41598-024-78964-5 DOI: https://doi.org/10.1038/s41598-024-78964-5

Ilyas, N., Amjid, M. W., Saleem, M. A., Khan, W., Wattoo, F. M., Rana, R. M., Maqsood, R. H., Zahid, A., Shah, G. A., Anwar, A., Ahmad, M. Q., Shaheen, M., Riaz, H., and Ansari, M. J. (2020). Quantitative trait loci (QTL) mapping for physiological and biochemical attributes in a Pasban90/Frontana recombinant inbred lines (RILs) population of wheat (Triticum aestivum) under salt stress condition. Saudi Journal of Biological Sciences 27(1), 341–351. doi: https://doi.org/10.1016/j.sjbs.2019.10.003 DOI: https://doi.org/10.1016/j.sjbs.2019.10.003

Islam, S., Haque, M. S., Emon, R. M., Islam, M. M., and Begum, S. N. (2012). Molecular characterization of wheat (Triticum aestivum L.) genotypes through SSR markers. Bangladesh Journal of Agricultural Research 37(3), 389–398. doi: https://doi.org/10.3329/bjar.v37i3.12082 DOI: https://doi.org/10.3329/bjar.v37i3.12082

Jabari, M., Golparvar, A., Sorkhilalehloo, B., and Shams, M. (2023). Investigation of genetic diversity of Iranian wild relatives of bread wheat using ISSR and SSR markers. Journal of Genetic Engineering Biotechnology 21(73), 1–16. doi: https://doi.org/10.1186/s43141-023-00526-5 DOI: https://doi.org/10.1186/s43141-023-00526-5

Kara, K., Rached-Kanouni, M., Mnasri, S., Khammar, H., and Ben Naceur, M. B. (2020). Genetic variability assessment in bread wheat (Triticum aestivum) grown in Algeria using microsatellites SSR markers. Biodiversitas 21, 2638–2644. doi: https://doi.org/10.13057/biodiv/d210635 DOI: https://doi.org/10.13057/biodiv/d210635

Kaur, V., Singh, S., and Behl, R. K. (2016). Heat and drought tolerance in wheat: integration of physiological and genetic platforms for better performance under stress. Ekin Journal of Crop Breeding and Genetics 2(1), 1-14. url: https://www.ekinjournal.com

Kaur, S. J., Talekar, N., Delvadiya, I., Singh, S. K., and Raut, A. (2023). Genetic profiling of bread wheat (Triticum aestivum L.): analyzing variation, associations, path analysis, and diversity to revolutionize crop enhancement. Journal of Food Chemistry and Nanotechnology 9(S1), S21–S27. doi: https://doi.org/10.17756/jfcn.2023-s1-005 DOI: https://doi.org/10.17756/jfcn.2023-s1-005

Kearsey, J. M., and Pooni. S. H. (1996). The genetic analysis of quantitative traits. 1st ed. Chapman and Hall, London. doi: https://doi.org/10.1007/978-1-4899-4441-2 DOI: https://doi.org/10.1007/978-1-4899-4441-2

Khan, A., Ahmad, M., Ahmed, M., Gill, K. S., and Akram, Z. (2021). Association analysis for agronomic traits in wheat under terminal heat stress. Saudi Journal of Biological Sciences 28, 7404–7415. doi: https://doi.org/10.1016/j.sjbs.2021.08.050 DOI: https://doi.org/10.1016/j.sjbs.2021.08.050

Kumar, P., Gupta, V. K., Misra, A. K., Modi, D. R., and Pandy, B. K. (2009). Potential of molecular markers in plant biotechnology. Plant Omics Journal 2(4), 141–162. url: https://www.pomics.com/Pradeep_2_4_2009_141_162.pdf

Kumar, H., Chugh, V., Kumar, M., Gupta, V., Prasad, S., Kumar, S., Singh, Ch. M., Kumar, R., Singh, B. K., Panwar, G., and Kumar, M. (2023a). Investigating the impact of terminal heat stress on contrasting wheat cultivars: a comprehensive analysis of phenological, physiological, and biochemical traits. Frontiers in Plant Science 14(1189005), 1–17. doi: https://doi.org/10.3389/fpls.2023.1189005 DOI: https://doi.org/10.3389/fpls.2023.1189005

Kumar, R., Kumar, S., Azad, C. S., and Baranwal, D. (2023b). Genetic variability, correlation and path coefficient analysis for yield components and grain minerals in wheat (Triticum aestivum L.). The Pharma Innovation Journal 12(9), 1140–1144. url: https://www.thepharmajournal.com

Kumari, M., Sharma, H., Dadeech, A., and Dashora, A. (2025). Molecular characterization and genetic diversity assessment of bread wheat [Triticum aestivum (L.) em. Thell] genotypes using SSR markers. International Journal of Current Microbiology and Applied Sciences 14(05), 139–147. doi: https://doi.org/10.20546/ijcmas.2025.1405.014 DOI: https://doi.org/10.20546/ijcmas.2025.1405.014

Li, Y., Tao, F., Hao, Y., Tong, J., Xiao, Y., He, Zh., and Reynolds, M. (2023). Variations in phenological, physiological, plant architectural and yield-related traits, their associations with grain yield and genetic basis. Annals of Botany 131, 503–519. doi: https://doi.org/10.1093/aob/mcad003 DOI: https://doi.org/10.1093/aob/mcad003

Maccaferri, M., Sanguineti, M. C., Demontis, A., El-Ahmed, A., L. Moral, G., Maalouf, F., Nachit, M., Nserallah, N., Ouabbou, H., Rhouma, S., Royo, C., Villegas, D., and Tuberosa, R. (2011). Association mapping in durum wheat grown across a broad range of water regimes. Journal of Experimental Botany 62(2), 409–438. doi: https://doi.org/10.1093/jxb/erq287 DOI: https://doi.org/10.1093/jxb/erq287

Ma, J., Zhao, D., Tang, X., Yuan, M., Zhang, D., Xu, M., Duan, Y., Ren, H., Zeng, Q., Wu, J., Han, D., Li, T., and Jiang, L. (2022). Genome-wide association study on root system architecture and identification of candidate genes in wheat (Triticum aestivum L.). International Journal of Molecular Sciences 23, 777–790. doi: https://doi.org/10.3390/ijms23031843 DOI: https://doi.org/10.3390/ijms23031843

Mallick, N., Jha, S. K., Agarwal, P., Mall, A., M., N., Kumar, S., Choudhary, M. K., Bansal, S., Saharan, M. S., Sharma, J. B., and Vinod. (2022a). Marker-assisted improvement of bread wheat variety HD2967 for leaf and stripe rust resistance. Plants 11, 1152. doi: https://doi.org/10.3390/plants11091152 DOI: https://doi.org/10.3390/plants11091152

Mallick, N., Jha, S. K., Agarwal, P., Kumar, S., Mall, A., M., N., Choudhary, M. K., Chandra, A. K., Bansal, S., Saharan, M. S., Sharma, J. B., and Vinod. (2022b). Marker-assisted transfer of leaf and stripe rust resistance from Triticum turgidum var. durum cv. Trinakria to wheat variety HD2932. Frontiers in Genetics 13, 941287. doi: https://doi.org/10.3389/fgene.2022.941287 DOI: https://doi.org/10.3389/fgene.2022.941287

Miller, P. A., Williams, J. C., Robinson, H. F., and Comstock, R. I. (1958). Estimates of genotypic and environmental variances and covariance in upland cotton and their implications in selection. Agronomy Journal 50(3), 126–131. doi: https://doi.org/10.2134/agronj1958.00021962005000030004x DOI: https://doi.org/10.2134/agronj1958.00021962005000030004x

Mkhabela, S. S., Shimelisa, H., Odindoa, A. O., and Mashilo, J. (2019). Response of selected drought tolerant wheat (Triticum aestivum L.) genotypes for agronomic traits and biochemical markers under drought-stressed and non-stressed conditions. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 69(8), 674–689. doi: https://doi.org/10.1080/09064710.2019.1641213 DOI: https://doi.org/10.1080/09064710.2019.1641213

Mohammadi, S. A., and Prasanna, B. M. (2003). Analysis of genetic diversity in crop plants: salient statistical tools and considerations. Crop Science 43, 1235–1248. doi: https://doi.org/10.2135/cropsci2003.1235 DOI: https://doi.org/10.2135/cropsci2003.1235

Moosavi, S., Yazdi Samadi, B., Naghavi, M., Zali, A., Dashti, H., and Pourshahbazi, A. (2008). Introduction of new indices to identify relative drought tolerance and resistance in wheat genotypes. Desert 12, 165–178. doi: https://doi.org/10.22059/jdesert.2008.27115

Nakano, Y., and Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology 22, 867–880. doi: https://doi.org/10.1093/oxfordjournals.pcp.a076232 DOI: https://doi.org/10.1093/oxfordjournals.pcp.a076232

Naroui Rad, M. R., Abdul Kadir, M., Rafii, M. Y., Jaafar, H. Z. E., and Naghavi, M. R. (2012). Bulked segregant analysis for relative water content to detect quantitative trait loci in wheat under drought stress. Genetics and Molecular Research 11(4), 3882–3888. doi: http://dx.doi.org/10.4238/2012.November.12.5 DOI: https://doi.org/10.4238/2012.November.12.5

Negisho, K., Shibru, S., Matros, A., Pillen, K., Ordon, F., and Wehner, G. (2022). Association mapping of drought tolerance indices in Ethiopian durum wheat (Triticum turgidum ssp. Durum). Frontiers in Plant Science 13(838088), 1–15. doi: https://doi.org/10.3389/fpls.2022.838088 DOI: https://doi.org/10.3389/fpls.2022.838088

Nourmand-moaied, F., Rostami. M. A., and Ghannadha, M. R. (2001). A study of morpho-physiological traits of bread wheat (Triticum aestivum L.) relationship with grain yield under normal and drought stress conditions. Iranian Journal of Agricultural Science 32(4), 785–794. url: https://sid.ir/paper/436197/fa

Oguz, M. C., Aycan, M., Oguz, E., Poyraz, I., and Yildiz, M. (2022). Drought stress tolerance in plants: interplay of molecular, biochemical and physiological responses in important development stages. Physiologia 2, 180–197. doi: https://doi.org/10.3390/physiologia2040015 DOI: https://doi.org/10.3390/physiologia2040015

Pour-Aboughadareh, A., Jadidi, O., Shooshtari, L., Poczai, P., and Mehrabi, A. A. (2022). Association analysis for some biochemical traits in wild relatives of wheat under drought stress conditions. Genes 13, 1–14. doi: https://doi.org/10.3390/genes13081491 DOI: https://doi.org/10.3390/genes13081491

R Core Team (2025). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. url: https://www.R-project.org/.

Rabieyan, E., Bihamta, M. R., Esmaeilzadeh Moghaddam, M., Alipour, H., Mohammadi, V., Azizyan, K., and Javid, S. (2023). Analysis of genetic diversity and genome-wide association study for drought tolerance related traits in Iranian bread wheat. BMC Plant Biology 23(431), 1–27. doi: https://doi.org/10.1186/s12870-023-04416-3 DOI: https://doi.org/10.1186/s12870-023-04416-3

Ramachandra Reddy, A., Chaitanya, K. V., Jutur, P. P., and Sumithra, K. (2004). Differential antioxidative responses to water stress among five mulberry (Morus alba L.) cultivars. Environmental and experimental botany 52(1), 33–42. doi: https://doi.org/10.1016/j.envexpbot.2004.01.002 DOI: https://doi.org/10.1016/j.envexpbot.2004.01.002

Rashid, U., Yasmin, H., Hassan, M. N., Naz, R., Nosheen, A., Sajjad, M., Ilyas, N., Keyani, R., Jabeen, Z., Mumtaz, S., Alyemeni, M. N., and Ahmad, P. (2022). Drought-tolerant Bacillus megaterium isolated from semi-arid conditions induces systemic tolerance of wheat under drought conditions. Plant Cell Reports 41(3), 549–569. doi: https://doi.org/10.1007/s00299-020-02640-x DOI: https://doi.org/10.1007/s00299-020-02640-x

Reddy, S. S., Saini, D. K., Singh, G. M., Sharma, S., Mishra, V. K., and Joshi, A. K. (2023). Genome-wide association mapping of genomic regions associated with drought stress tolerance at seedling and reproductive stages in bread wheat. Frontiers in Plant Science 14(1166439), 1–17. doi: https://doi.org/10.3389/fpls.2023.1166439 DOI: https://doi.org/10.3389/fpls.2023.1166439

Rosewarne, G. M., Herrera-Foessel, S. A., Singh, R. P., Huerta-Espino, J., Lan, C. X., and He, Z. H. (2013). Quantitative trait loci of stripe rust resistance in wheat. Theoretical Applied Genetics 126(10), 2427–2449. doi: https://doi.org/10.1007/s00122-013-2159-9 DOI: https://doi.org/10.1007/s00122-013-2159-9

Rossielli, A., and Hamblin, A. (1981). Theorical aspects of selection for stress and non-stress environment. Crop Science 21, 1441–1446. doi: https://doi.org/10.2135/cropsci1981.0011183X002100060033x DOI: https://doi.org/10.2135/cropsci1981.0011183X002100060033x

Ruan, C. J., Li, H., and Mopper, S. (2009). Characterization and identification of ISSR markers associated with resistance to dried-shrink disease in Sea Buckthorn. Molecular Breeding 24(3), 255–268. doi: https://doi.org/10.1007/s11032-009-9288-5 DOI: https://doi.org/10.1007/s11032-009-9288-5

Saed-Moucheshi, A., Razi, H., Dadkhodaie, A., Ghodsi, M., and Dastfal, M. (2019). Association of biochemical traits with grain yield in triticale genotypes under normal irrigation and drought stress conditions. Australian Journal of Crop Science 13, 272–281. doi: https://doi.org/10.21475/ajcs.19.13.02.p1403 DOI: https://doi.org/10.21475/ajcs.19.13.02.p1403

Saeed, I., Chen, X., Bachir, D. G., Chen, L., and Hu, Y-G. (2017). Association mapping for photosynthesis and yield traits under two moisture conditions and their drought indices in winter bread wheat (Triticum aestivum L.) using SSR markers. Australian Journal of Crop Science 11(03), 248–257. doi: https://doi.org/10.21475/ajcs.17.11.03pne252

Sallam, A., Alqudah, A. M., Dawood, M., Baenziger, P. S., and Borner, A. (2019). Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. International Journal of Molecular Sciences 20, 1–36. doi: https://doi.org/10.3390/ijms20133137 DOI: https://doi.org/10.3390/ijms20133137

Sallam, M., Ghazy, A., Al-Doss, A., and Al-Ashkar, I. (2024a). Combining genetic and phenotypic analyses for detecting bread wheat genotypes of drought tolerance through multivariate analysis techniques. Life 14, 183. doi: https://doi.org/10.3390/life14020183 DOI: https://doi.org/10.3390/life14020183

Sallam, M., Al-Ashkar, I., Al-Doss, A., Al-Gaadi, K. A., Zeyada, A. M., and Ghazy, A. (2024b). Assessing heat stress tolerance of wheat genotypes through integrated molecular and physio-biochemical analyses. Agronomy 14, 1999. doi: https://doi.org/10.3390/agronomy14091999 DOI: https://doi.org/10.3390/agronomy14091999

Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical Biochemistry 47, 389–394. doi: https://doi.org/10.1016/0003-2697(72)90132-7 DOI: https://doi.org/10.1016/0003-2697(72)90132-7

Shah, A. A., Bhat, R. A., Bhat, B. A., and Mondal, S. K. (2019). Genetic evaluation of winter wheat genotypes under rainfed conditions. International Journal of Chemical Studies 7(1), 1064–1071. url: https://www.chemijournal.com/archives/2019/vol7issue1/PartS/6-4-853-700.pdf

Sowadan, O., Xu, S., Li, Y., Muleke, E. M., Sitoe, H. M., Dang, X., Jiang, J., Dong, H., and Hong, D. (2024). Genome-wide association analysis unravels new quantitative trait loci (QTLs) for eight lodging resistance constituent traits in rice (Oryza sativa L.). Genes 15(105), 1–18. doi: https://doi.org/10.3390/genes15010105 DOI: https://doi.org/10.3390/genes15010105

Sunil kumar, V. P., Krishna, H., Devate, N. B., Manjunath, K. K., Chauhan, D., Singh, S., Sinha, N., Singh, J. B., Prakasha, T. L., Pal, D., Sivasamy, M., Jain, N., Singh, G. P., and Singh, P. K. (2023). Marker-assisted selection for transfer of QTLs to a promising line for drought tolerance in wheat (Triticum aestivum L.). Frontiers in Plant Science 14(1147200), 1–13. doi: https://doi.org/10.3389/fpls.2023.1147200 DOI: https://doi.org/10.3389/fpls.2023.1147200

Vaillancourt, A., Nkongolo, K., Michael, P., and Mehes, M. (2008). Identification, characterization, and chromosome locations of rye and wheat specific ISSR and SCAR markers useful for breeding purposes. Euphytica 159(3), 297–306. doi: https://doi.org/10.1007/s10681-007-9492-5 DOI: https://doi.org/10.1007/s10681-007-9492-5

Yusuf, Z., Mohammed, W., Zeleke, H., Hussein, Sh., and Arno, H. (2021). Coheritability and genetic advances of agromorphological and oil quality traits in groundnut (Arachis hypogaea L.) genotypes from Ethiopia. International Journal of Agronomy 5148772(5). doi: https://doi.org/10.1155/2021/5148772 DOI: https://doi.org/10.1155/2021/5148772

Zhao, J., Sun, L., Gao, H., Hu, M., Mu, L., Cheng, X., Wang, J., Zhao, Y., Li, Q., Wang, P., Li, H., and Zhang, Y. (2023). Genome-wide association study of yield-related traits in common wheat (Triticum aestivum L.) under normal and drought treatment conditions. Frontiers in Plant Science 13(1098560), 1–20. doi: https://doi.org/10.3389/fpls.2022.1098560 DOI: https://doi.org/10.3389/fpls.2022.1098560