History and impact of a bean (Phaseolus spp., Leguminosae, Phaseoleae) collection

Main Article Content

Daniel Debouck
Marcela Santaella
Luis Guillermo Santos


This work explains the reasons why a bean collection was established in 1973 at the International Center of Tropical Agriculture (CIAT) near Palmira in Colombia. It shows the impact of the collection on plant breeding and in agricultural development through the distribution of germplasm to the center’s bean breeding program, to successively find resistances to pests and diseases, adaptation to low phosphorus and drought, and more recently higher content of iron and zinc in seeds. The collection was also used to progress knowledge in biological sciences, as shown by a dozen of examples. A reason behind these successes was foresight and focus on diversity per se in the collection. The paper ends with a number of suggestions for the way ahead for the genetic resources conservation and management of these bean crops, and possible take-home lessons for curators in charge of other similar collections.



Article Details

How to Cite
Debouck, D., Santaella, M. . and Santos, L. G. (2021) “History and impact of a bean (Phaseolus spp., Leguminosae, Phaseoleae) collection”, Genetic Resources, 2(4), pp. 21–43. doi: 10.46265/genresj.WJEU8358.
Author Biographies

Daniel Debouck, Alliance of Bioversity International and International Center for Tropical Agriculture (CIAT)

Genetic Resources Program, Alliance of Bioversity International and International Center for Tropical Agriculture (CIAT), Km 17 recta Cali-Palmira, Cali, AA 6713, Colombia

formerly Leader, currently Visiting Researcher and Emeritus.

Marcela Santaella, Alliance of Bioversity International and International Center for Tropical Agriculture (CIAT)

Operations and Quality Manager

Genetic Resources Program, Alliance of Bioversity International and International Center for Tropical Agriculture (CIAT), Km 17 recta Cali-Palmira, Cali, AA 6713, Colombia


Luis Guillermo Santos, Alliance of Bioversity International and International Center for Tropical Agriculture (CIAT)

Genetic Resources Program, Alliance of Bioversity International and International Center for Tropical Agriculture (CIAT), Km 17 recta Cali-Palmira, Cali, AA 6713, Colombia


Abawi, G S et al. (1978). “Inheritance of resistance to white mold disease in Phaseolus coccineus”. J. Hered 69, pp. 200–202. DOI: https://doi.org/10.1093/oxfordjournals.jhered.a108926.

Acosta-Gallegos, J A, J D Kelly, and P Gepts (2007). “Prebreeding in common bean and use of genetic diversity from wild germplasm”. Crop Sci 47, pp. 44–59. DOI: https://doi.org/10.2135/cropsci2007.04.0008IPBS.

Acosta-Gallegos, J A, C Quintero, et al. (1998). “A new variant of arcelin in wild common bean, Phaseolus vulgaris L., from southern Mexico”. Genet. Resources & Crop Evol 45, pp. 235–242. DOI: https://doi.org/10.1023/A:1008636132108.

Adams, M W(1973). “Plant architecture and physiological efficiency in the field bean”. In: Potential of field beans and other food legumes in Latin America. Ed. by D. Wall. Cali, Colombia: Centro Internacional de Agricultura Tropical, pp. 266–278. URL: https://agris.fao.org/agris-search/search.do?recordID=XF2015014286.

Aguilar, O M, O Riva, and E Peltzer (2004). “Analysis of Rhizobium etli and its symbiosis with wild Phaseolus vulgaris supports coevolution in centers of host diversification”. Proc. Natl. Acad. Sci. USA 101, pp. 13548–13553. DOI: https://doi.org/10.1073/pnas.0405321101.

Allard, R. W. (1970). “Problems of maintenance”. In: Genetic resources in plants: their exploration and conservation. Ed. by O. H. Frankel and E. Bennett. Oxford, United Kingdom: Blackwell Scientific Publications, pp. 491–499.

Aragão, F J L, S G Ribeiro, et al. (1998). “Transgenic beans (Phaseolus vulgaris L.) engineered to express viral antisense RNAs show delayed and attenuated symptoms to bean golden mosaic geminivirus”. Molec. Breed 4, pp. 491–499. DOI: https://doi.org/10.1023/A:1009613607559.

Aragão, F J L, G R Vianna, et al. (2002). “Transgenic dry bean tolerant to the herbicide glufosinate ammonium”. Crop Sci 42, pp. 1298–1302. DOI: https://doi.org/10.2135/cropsci2002.1298.

Assefa, T et al. (2019). “A review of breeding objectives, genomic resources, and marker-assisted methods in common bean (Phaseolus vulgaris L.)” Mol. Breeding 39, pp. 1–23. DOI: https://doi.org/10.1007/s11032-018-0920-0.

Bandyopadhyay, A et al. (2020). “CRISPR-Cas12a (Cpf1): a versatile tool in the plant genome editing tool box for agricultural advancement”. Front. Plant Sci 11(584151), pp. 1–17. DOI: https://doi.org/10.3389/fpls.2020.584151.

Bannerot, H (1989). “The potential of hybrid beans”. Current topics in breeding of common bean, pp. 111–134. URL: http://ciat-library.ciat.cgiar.org/Articulos_Ciat/Digital/SB327.C87_International_Bean_ Breeding_Workshop_1988,_Cali,_Colombia._Current_topics_in_bree.pdf.

Bassett, M J et al. (2002). “Classical and molecular genetic studies of the strong greenish yellow seedcoat color in ’Wagenaar’ and ’Enola’ common bean”. J. Amer. Soc. Hort. Sci 127, pp. 50–55. DOI: https://doi.org/10.21273/JASHS.127.1.50.

Battisti, D S and R L Naylor (2009). “Historical warnings of future food insecurity with unprecedented seasonal heat”. Science 323, pp. 240–244. DOI: https://doi.org/10.1126/science.1164363.

Bayuelo-Jiménez, J, D G Debouck, and J Lynch (2002). “Salinity tolerance in Phaseolus species during early vegetative growth”. Crop Sci 42, pp. 2184–2192. DOI: https://doi.org/10.2135/cropsci2002.2184.

Beaver, J S (1999). “Improvement of large-seeded race Nueva Granada cultivars”. In: Common bean improvement in the twenty first century. Ed. by S. P. Singh. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 275–288. DOI: https://doi.org/10.1007/978-94-015-9211-6_11.

Beaver, J S, G Godoy, et al. (2002). “Estrategias para seleccionar frijol común con mayor resistencia a Mustia hilachosa”. Agron. Mesoamer 13, pp. 67–72. URL: http://www.redalyc.org/articulo.oa?id=43713113.

Beaver, J S, C G Muñoz-Perea, et al. (2005). “Registration of Bean Golden Yellow Mosaic Virus resistant dry bean germplasm lines PR9771-3-2, PR0247-49, and PR0157-4-1”. Crop Sci 45. DOI: https://doi.org/10.2135/cropsci2004.0487.

Beebe, S E (1997). “La colección núcleo del fríjol y la búsqueda de genes útiles: el caso de tolerancia a bajo fósforo.” In: Taller de mejoramiento de fríjol para el siglo XXI: bases para una estrategia para América Latina. Ed. by S. P. Singh and O. Voysest. (in Spanish). Cali, Colombia: Centro Internacional de Agricultura Tropical, pp. 3–8. URL: http://ciat-library.ciat.cgiar.org/Articulos_Ciat/biblioteca/Taller_de_Mejoramiento_de_ Frijol_Paa_El.pdf#page=15.

Beebe, S E (2012). “Common bean breeding in the tropics”. Plant Breeding Reviews 36, pp. 357–426. DOI: https://doi.org/10.1002/9781118358566.ch5.

Beebe, S E, F A Bliss, and H F Schwartz (1981). “Root rot resistance in common bean germplasm of Latin American origin”. Plant Disease 65, pp. 485–489. DOI: https://doi.org/10.1094/PD-65-485.

Beebe, S E, C Cardona, et al. (1993). “Development of common bean (Phaseolus vulgaris L.) lines resistant to the pod weevil, Apion godmani Wagner, in Central America”. Euphytica 69, pp. 83–88. DOI: https://doi.org/10.1007/BF00021729.

Beebe, S E and D G Debouck (2019). “Common beans and Lima beans in the northern Andes: evolutionary riddles and potential utility”. Annu. Rept Bean Improvement Coop. (USA) 62, pp. xxii–xxxi. URL: https://hdl.handle.net/10568/101566.

Beebe, S E, A V González, and J Rengifo (2000). “Research on trace minerals in the common bean”. Food & Nutrition Bull 21, pp. 387–391. DOI: https://doi.org/10.1177/156482650002100408.

Beebe, S E, J Ramírez, et al. (2011). “Genetic improvement of common beans and the challenges of climate change”. In: Crop adaptation to climate change. Ed. by S. S. Yadav et al. John Wiley & Sons Ltd. and Blackwell Publishing Ltd, pp. 356–369. DOI: https://doi.org/10.1002/9780470960929.ch25.

Beebe, S E, I M Rao, C Cajiao, et al. (2008). “Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments”. Crop Sci 48, pp. 582–592. DOI: https://doi.org/10.2135/cropsci2007.07.0404.

Beebe, S E, I M Rao, M W Blair, et al. (2013). “Phenotyping common beans for adaptation to drought”. Front. Physiol 4, pp. 1–20. DOI: https://doi.org/10.3389/fphys.2013.00035.

Beebe, S E, M Rojas-Pierce, et al. (2006). “Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean”. Crop Sci 46, pp. 413–423. DOI: https://doi.org/10.2135/cropsci2005.0226.

Beebe, S E, P W Skroch, et al. (2000). “Structure of genetic diversity among common bean landraces of Middle American origin based on correspondence analysis of RAPD”. Crop Sci 40, pp. 264–273. DOI: https://doi.org/10.2135/cropsci2000.401264x.

Beebe, S, J Lynch, et al. (1997). “A geographical approach to identify phosphorus-efficient genotypes among landraces and wild ancestors of common bean”. Euphytica 95, pp. 325–336. DOI: https://doi.org/10.1023/A:1003008617829.

Beebe, S, J Rengifo, et al. (2001). “Diversity and origin of Andean landraces of common bean”. Crop Sci 41, pp. 854–862. DOI: https://doi.org/10.2135/cropsci2001.413854x.

Beem, J van, J Kornegay, and L Lareo (1992). “Nutritive value of the nuña popping bean”. Econ. Bot 46, pp. 164–170. DOI: https://doi.org/10.1007/BF02930631.

Bhatta, B P and S Malla (2020). “Improving horticultural crops via CRISPR/ Cas9: current successes and prospects”. Plants 9, pp. 1–19. DOI: https://doi:10.3390/plants9101360.

Bitocchi, E et al. (2013). “Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes”. New Phytol 197, pp. 303–313. DOI: https://doi.org/10.1111/j.1469-8137.2012.04377.x.

Blair, M W, C Astudillo, et al. (2011). “QTL analyses for seed iron and zinc concentrations in an intra-genepool population of Andean common beans (Phaseolus vulgaris L.)” Theor. Appl. Genet 122, pp. 511–521. DOI: https://doi.org/doi:10.1007/s00122-010-1465-8.

Blair, M W and J S Beaver (1992). “Resistance to the sweet potato whitefly (Bemisia tabaci), the vector of Bean Golden Mosaic Virus in dry beans (Phaseolus vulgaris)”. Annu. Rept. Bean Improvement Coop. (USA) 35, pp. 154–155. URL: https://naldc.nal.usda.gov/download/IND50000040/PDF.

Blair, M W, J M Díaz, et al. (2007). “Microsatellite characterization of Andean races of common bean (Phaseolus vulgaris L.)” Theor. Appl. Genet 116, pp. 29–43. DOI: https://doi.org/10.1007/s00122-007-0644-8.

Blair, M. W., G Iriarte, and S Beebe (2006). “QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean x wild common bean (Phaseolus vulgaris L.) cross”. Theor. Appl. Genet 112, pp. 1149–1163. DOI: https://doi.org/doi:10.1007/s00122-010-1465-8.

Blair, M W, J I Medina, et al. (2010). “QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population”. Theor. Appl. Genet 121, pp. 1059–1070. DOI: https://doi.org/10.1007/s00122-010-1371-0.

Blair, M W, A Soler, and A J Cortés (2012). “Diversification and population structure in common beans (Phaseolus vulgaris L.)” PLoS ONE 7, pp. 1–12. DOI: https://doi.org/10.1371/journal.pone.0049488.

Borlaug, N E (1983). “Contributions of conventional plant breeding to food production”. Science 219, pp. 689–693. DOI: https://doi.org/10.1126/science.219.4585.689.

Broughton, W J et al. (2003). “Beans (Phaseolus spp.) - model food legumes”. Plant & Soil 252, pp. 55–128. DOI: https://doi.org/10.1023/A:1024146710611.

Buendía, H F et al. (2003). “Identificación de marcadores moleculares asociados a genes de rendimiento en una población R.C2F3.7 de fríjol común Phaseolus vulgaris L. (DOR390 x G19892)”. Fitotecnia Colombiana 1. (in Spanish), pp. 57–64.

Burkart, A and H Brücher (1953). “Phaseolus aborigineus Burkart, die mutmaßliche andine Stammform der Kulturbohne”. Züchter 23, pp. 65–72. DOI: https://doi.org/10.1007/BF00712180.

Burle, M L et al. (2010). “Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity”. Theor. Appl. Genet 121, pp. 801–813. DOI: https://doi.org/10.1007/s00122-010-1350-5.

Byrne, P F et al. (2018). “Sustaining the future of plant breeding: the critical role of the USDA-ARS national plant germplasm system”. Crop Sci 58, pp. 451–468. DOI: https://doi.org/10.2135/cropsci2017.05.0303.

Campa, A et al. (2011). “Mapping and use of seed protein loci for marker-assisted selection of growth habit and photoperiod response in Nuña bean (Phaseolus vulgaris L.)” Euphytica 179, pp. 383–391. DOI: https://doi.org/10.1007/s10681-010-0320-y.

Cardona, C et al. (1990). “Comparative value of four arcelin variants in the development of dry bean lines resistant to the Mexican bean weevil”. Entomol. Exp. Appl 56, pp. 197–206. DOI: https://doi.org/10.1111/j.1570-7458.1990.tb01397.x.

Cattan-Toupance, I, Y Michalakis, and C Neema (1998). “Genetic structure of wild bean populations in their South-Andean centre of origin”. Theor. Appl. Genet 96, pp. 844–851. DOI: https://doi.org/10.1007/s001220050811.

Chacón-Sánchez, M.I., J Martínez-Castillo, et al. (2021). “Gene flow in Phaseolus beans and its role as a plausible driver of ecological fitness and expansion of cultigens”. Front. Ecol. Evol 9, pp. 1–25. DOI: https://doi.org/10.3389/fevo.2021.618709.

Chacón-Sánchez, M.I., B Pickersgill, and D G Debouck (2005). “Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races”. Theor. Appl. Genet 110, pp. 432–444. DOI: https://doi.org/10.1007/s00122-004-1842-2.

Chacón-Sánchez, M.I., B Pickersgill, D G Debouck, and J Salvador-Arias (2007). “Phylogeographic analysis of the chloroplast DNA variation in wild common bean (Phaseolus vulgaris L.) in the Americas”. Pl. Syst. Evol 266, pp. 175–195. DOI: https://doi.org/10.1007/s00606-007-0536-z.

Cichy, K A et al. (2015). “A Phaseolus vulgaris diversity panel for Andean bean improvement”. Crop Sci 55, pp. 2149–2160. DOI: https://doi.org/10.2135/cropsci2014.09.0653.

Clawson, D L (1985). “Harvest security and intraspecific diversity in traditional tropical agriculture”. Econ. Bot 39, pp. 56–67. DOI: https://doi.org/10.1007/BF02861175.

Cortés, A J and M W Blair (2018). “Genotyping by sequencing and genome-environment associations in wild common bean predict widespread divergent adaptation to drought”. Front. Plant Sci 9, pp. 1–13. DOI: https://doi.org/10.3389/fpls.2018.00128.

Cruz-Balarezo, J et al. (2009). “Evaluación agromorfológica y caracterización molecular de la ñuña (Phaseolus vulgaris L.)” Idesia (Chile) 27. (in Spanish), pp. 29–40. DOI: https://doi.org/10.4067/S0718-34292009000100005.

Cuellar, J (2003). Estaciones experimentales de Quilichao y Popayán: 25 años de investigación. (in Spanish). Cali, Colombia: Centro Internacional de Agricultura Tropical, pp. 1–8.

Debouck, D G (1992). “Frijoles, Phaseolus spp”. In: Cultivos marginados: otra perspectiva de 1492. Ed. by E. Hernández Bermejo and J. León. Food and Agriculture Organization of the United Nations, pp. 92–97. URL: http://www.fao.org/3/t0646s/t0646s.pdf.

Debouck, D G (1999). “Diversity in Phaseolus species in relation to the common bean”. In: Common bean improvement in the twenty-first century. Ed. by S. P. Singh. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 25–52. DOI:


Debouck, D G (2000). “Biodiversity, ecology and genetic resources of Phaseolus beans - Seven answered and unanswered questions”. In: Wild legumes. Ed. by K Oono. Tsukuba, Ibaraki, Japan: Ministry of Agriculture, Forestry, Fisheries, and National Institute of Agrobiological Resources, pp. 95–123. URL: https://www.gene.affrc.go.jp/pdf/misc/international-WS_07.pdf#page=95.

Debouck, D G (2021). “Phaseolus beans (Leguminosae, Phaseoleae): a checklist and notes on their taxonomy and ecology”. J. Bot. Res. Inst. Texas 15, pp. 73–111. DOI: https://doi.org/10.17348/jbrit.v15.i1.1052.

Debouck, D G, A Maquet, and C E Posso (1989). “Biochemical evidence for two different gene pools in Lima beans (Phaseolus lunatus L.)” Annu. Rept. Bean Improvement Coop. (USA) 32, pp. 58–59. URL: https://naldc.nal.usda.gov/naldc/download.xhtml?id=IND89038220&content=PDF.

Delgado-Salinas, A, R Bibler, and M Lavin (2006). “Phylogeny of the genus Phaseolus (Leguminosae): a recent diversification in an ancient landscape”. Syst. Bot 31. DOI: https://10.1600/036364406779695960.

Dillen, W et al. (1997). “Agrobacterium-mediated transformation of Phaseolus acutifolius A. Gray”. Theor. Appl. Genet 94, pp. 151–158. DOI: https://doi.org/10.1007/s001220050394.

Donald, C M (1968). “The breeding of crop ideotypes”. Euphytica 17, pp. 385–403. DOI: https://doi.org/10.1007/BF00056241.

Doudna, J A and E Charpentier (2014). “The new frontier of genome engineering with CRISPR-Cas9”. Science 346(6213). DOI: https://doi.org/10.1126/science.1258096.

Dudnik, N S, I Thormann, and T Hodgkin (2001). “The extent of use of plant genetic resources in research: a literature survey”. Crop Sci 41. DOI: https://doi.org/10.2135/cropsci2001.4116.

Estrada-Navarrete, G et al. (2007). “Fast, efficient and reproducible genetic transformation of Phaseolus spp. by Agrobacterium rhizogenes”. Nature Protocols 2, pp. 1819–1824. DOI: https://doi.org/10.1038/nprot.2007.259.

Evans, A M (1973). “I. Commentary upon: plant architecture and physiological efficiency in the field bean”. In: Potential of field beans and other food legumes in Latin America. Ed. by D. Wall. Centro Internacional de Agricultura Tropical, pp. 279–286. URL: https://ufdc.ufl.edu/UF00082052/00001.

Evans, A M (1976). “Beans - Phaseolus spp. (Leguminosae - Papilionatae)”. In: Evolution of crop plants. Ed. by N. W. Simmonds. London, United Kingdom: Longman, pp. 168–172.

Evenson, R E and D Gollin (2003). “Assessing the impact of the Green Revolution, 1960 to 2000”. Science 300, pp. 758–762. DOI: https://doi.org/10.1126/science.1078710.

FAO (2002). The International Treaty on Plant Genetic Resources for Food and Agriculture. Rome, Italy. URL: http://www.fao.org/3/a-i0510e.pdf.

Fowler, C (2016). Seeds on ice: Svalbard and the global seed vault. Westport, Connecticut, USA: Prospecta Press, pp. 1–161.

Foyer, C H et al. (2016). “Neglecting legumes has compromised human health and sustainable food production”. Nature Plants 2, pp. 1–10. DOI: https://doi.org/10.1038/NPLANTS.2016.112.

Frankel, O H and A H D Brown (1984). “Plant genetic resources today: a critical appraisal”. In: Crop genetic resources: conservation and evaluation. Ed. by J. H. W. Holden and J. T. Williams. London, England: George Allen & Unwin Publishers Ltd, pp. 249–257.

Frankel, O H and J G Hawkes, eds. (1975). Crop genetic resources for today and tomorrow.Cambridge, United Kingdom: Cambridge University Press.

Freeman, G F (1913). “The tepary, a new cultivated legume from the Southwest”. Bot. Gaz 56, pp. 395–417. DOI: https://doi.org/10.1086/331183.

Freytag, G F and D G Debouck (2002). “Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae-Papilionoideae) in North America, Mexico and Central America ”. SIDA Bot. Misc 23, pp. 1–300. DOI: https://doi.org/10568/54291.

Fu, Y. B (2017). “The vulnerability of plant genetic resources conserved ex situ”. Crop Sci 57, pp. 2314–2328. DOI: https://doi.org/10.2135/cropsci2017.01.0014.

Galwey, N W (1983). “Characteristics of the common bean, Phaseolus vulgaris, associated with resistance to the leafhopper Empoasca kraemeri”. Ann. Appl. Biol 102, pp. 161–175. DOI: https://doi.org/10.1111/j.1744-7348.1983.tb02677.x.

Garcia, T et al. (2021). “Comprehensive genomic resources related to domestication and crop improvement traits in Lima bean”. Nature Communic 12, pp. 1–17. DOI: https://doi/org/10.1038/s41467-021-20921-1.

Garrido, B et al. (1991). “Uni-2 - A dominant mutation affecting leaf development in Phaseolus vulgaris”. J. Hered 82, pp. 181–183. DOI: https://doi.org/10.1093/oxfordjournals.jhered.a111059.

Garza, R et al. (2001). “Hypersensitive response of beans to Apion godmani (Coleoptera: Cucurlionidae)”. J. Econ. Entomol 94, pp. 958–962. DOI: https://doi.org/10.1603/0022-0493-94.4.958.

Garzón, G L N et al. (2011). “Disease response of interspecific common bean (Phaseolus vulgaris) x scarlet runner or year-long bean (P. coccineus and P. dumosus) breeding lines for Ascochyta blight resistance”. Annu. Rept. Bean Improvement Coop. (USA) 54, pp. 122–123.

Gentry, H S (1969). “Origin of the common bean, Phaseolus vulgaris”. Econ. Bot 23, pp. 55–69. URL: https://www.jstor.org/stable/4253014.

Gepts, P (2002). “A comparison between crop domestication, classical plant breeding, and genetic engineering”. Crop Sci 42, pp. 1780–1790. DOI: https://doi.org/10.2135/cropsci2002.1780.

Gepts, P (2006). “Plant genetic resources conservation and utilization: the accomplishments and future of a societal insurance policy”. Crop Sci 46, pp. 2278–2292. DOI: https://doi.org/10.2135/cropsci2006.03.0169gas.

Gepts, P et al. (1986). “Phaseolin protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris L.): evidence for multiple centers of domestication”. Econ. Bot 40, pp. 451–468. DOI: https://doi.org/10.1007/BF02859659.

Gioia, T et al. (2013). “Evidence for introduction bottleneck and extensive inter-gene pool (Mesoamerica x Andes) hybridization in the European common bean (Phaseolus vulgaris L.) germplasm”. PLoS ONE 8(e75974), pp. 1–14. DOI: https://doi.org/10.1371/journal.pone.0075974.

Goettsch, B et al. (2021). “Extinction risk of Mesoamerican crop wild relatives.” Plants, People, Planet 3(6), pp. 775–795. DOI: https://doi.org/10.1002/ppp3.10225.

Gonçalves-Vidigal, M C, A S Cruz, et al. (2011). “Linkage mapping of the Phg-1 and Co-14 genes for resistance to angular leaf spot and anthracnose in the common bean cultivar AND 277”. Theor. Appl. Genet. 112, pp. 893–903. DOI: https://doi.org/10.1007/s00122-010-1496-1.

Gonçalves-Vidigal, M C, T A S Gilio, et al. (2020). “New Andean source of resistance to anthracnose and angular leaf spot: fine-mapping of disease-resistance genes in California Dark Red Kidney common bean cultivar”. PLoS ONE 15, pp. 1–19. DOI: https://doi.org/10.1371/journal.pone.0235215.

Guerra-García, A et al. (2017). “Domestication genomics of the open-pollinated scarlet runner bean (Phaseolus coccineus L.)” Front. Plant Sci 8(1891), pp. 1–15. DOI: https://doi.org/10.3389/fpls.2017.01891.

Gutiérrez, J A and S P Singh (1985). “Heterosis and inbreeding depression in dry bush beans, Phaseolus vulgaris L”. Can. J. Plant Sci 65, pp. 243–249. DOI: https://doi.org/10.4141/cjps85-036.

Guzmán, P et al. (1995). “Characterization of variability in the fungus Phaeoisariopsis griseola suggests coevolution with the common bean (Phaseolus vulgaris)”. Phytopathology 85, pp. 600–607. DOI: https://doi.org/10.1094/Phyto-85-600.

Halewood, M et al. (2020). “Germplasm acquisition and distribution by CGIAR genebanks”. Plants 9(10), pp. 1–29. DOI: https://doi.org/10.3390/plants9101296.

Harlan, J R (1978). “Sources of genetic defense”. Ann. N.Y. Acad. Sci 287, pp. 345–356. DOI: https://doi.org/10.1111/j.1749-6632.1977.tb34252.x.

Hart, J P and P D Griffiths (2014). “Resistance to Clover yellow vein virus in common bean germplasm”. Crop Sci 54, pp. 2609–2618. DOI: https://doi.org/10.2135/cropsci2014.03.0263.

Hedrick, U P (1931). The vegetables of New York. Vol. 1 part 2. Albany, New York: New York Agricultural Experiment Station. JB Lyon Company Printers, pp. 82–83.

Heiser, C B (1990). Seed to civilization - The story of food. Cambridge, Massachusetts, USA: Harvard University Press.

Hernández-Bravo, G (1973). “Potentials and problems of production of dry beans in the lowland tropics”. In: Potentials of field beans and other food legumes in Latin America. Ed. by D. Wall. Cali, Colombia: Centro Internacional de Agricultura Tropical, pp. 144–150. URL: http://ufdc.ufl.edu/UF00082052/00001.

Hernández-Xolocotzi, E (1973). “Commentary upon plant introduction and germplasm of Phaseolus vulgaris and other food legumes”. In: Potentials of field beans and other food legumes in Latin America. Ed. by D Wall. Cali, Colombia: Centro Internacional de Agricultura Tropical, pp. 253–258. URL: https://ufdc.ufl.edu/UF00082052/00001.

Hickey, L T et al. (2019). “Breeding crops to feed 10 billion”. Nature Biotechnol 37, pp. 744–754. DOI: https://doi.org/10.1038/s41587-019-0152-9.

Hidalgo, R (1991). “CIAT’s world Phaseolus collection”. In: Common beans: research for crop improvement. Ed. by A. van Schoonhoven and O. Voysest. Wallingford, United Kingdom: CABI, pp. 163–197.

Hidalgo, R and S Beebe (1997). “Phaseolus beans”. In: Biodiversity in trust - Conservation and use of plant genetic resources in CGIAR Centres. Ed. by D. Fuccillo, L. Sears, and P. Stapleton. Cambridge, United Kingdom: Cambridge University Press, pp. 139–155.

Hidalgo, R, H Rubiano, and O Toro, eds. (1992). Catálogo de germoplasma de fríjol común Phaseolus vulgaris L. Cali, Colombia: Centro Internacional de Agricultura Tropical. URL: http://ciat-library.ciat.cgiar.org/ciat_digital/CIAT/books/historical/028.1.pdf.

Hunter, J E et al. (1982). “Evaluation of plant introductions of Phaseolus spp. for resistance to white mold”. Plant Dis 66, pp. 320–322. DOI: https://doi.org/10.1094/PD-66-320.

Hymowitz, T and R L Bernard (1991). “Origin of the soybean and germplasm introduction and development in North America”. In: Use of plant introductions in cultivar development part 1. Ed. by H. L. Shands and L. E. Wiesner. Vol. 17. Crop Science Society of America Special Publication, pp. 147–164. URL: https://laqetezoga.uppdf.icu/use-of-plant-introductions-in- cultivar-development-book-26495rj.php.

Islam, F M A et al. (2002). “Seed compositional and disease resistance differences among gene pools in cultivated common bean”. Genet. Resources & Crop Evol 49, pp. 285–293. DOI: https://doi.org/10.1023/A:1015510428026.

Jacobsen, H. J (1999). “Genetic transformation”. In: Common bean improvement in the twenty first-century. Ed. by S.P. Singh. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 125–132. DOI: https://doi.org/10.1007/978-94-015-9211-6_11.

Johnson, N L, D Pachico, and O Voysest (2003). “The distribution of benefits from public international germplasm banks: the case of beans in Latin America”. Agricult. Econ 29, pp. 277–286. DOI: https://doi.org/10.1016/S0169-5150(03)00055-0.

Kamfwa, K et al. (2018). “QTL mapping of resistance to bean weevil in common bean”. Crop Sci 58, pp. 2370–2378. DOI: https://doi.org/10.2135/cropsci2018.02.0106.

Kaplan, L and L N Kaplan (1992). “Beans of the Americas”. In: Chillies to chocolate – Food the Americas gave the world. Ed. by N. Foster and L. S. Cordell. Tucson, Arizona, USA: The University of Arizona Press, pp. 61–79.

Kastner, T et al. (2012). “Global changes in diets and the consequences for land requirements for food”. Proc. Natl. Acad. Sci. USA 109, pp. 6868–6872. DOI: http://dx.doi.org/10.1073/pnas.1117054109.

Kelly, J D (2001). “Remaking bean plant architecture for efficient production”. Adv. Agron 71, pp. 109–143. DOI: https://doi.org/10.1016/S0065-2113(01)71013-9.

Kelly, J D (2004). “Advances in common bean improvement: some case histories with broader applications”. Acta Horticulturae 637, pp. 99–122. DOI: https://doi.org/10.17660/ActaHortic.2004.637.11.

Kelly, J D and P N Miklas (1999). “Marker-assisted selection”. In: Common bean improvement in the twenty-first century. Ed. by S. P. Singh. Kluwer Academic Publishers, pp. 93–123. DOI: https://doi.org/10.1007/978-94-015-9211-6_11.

Khoury, C K et al. (2014). “Increasing homogeneity in global food supplies and the implications for food security”. Proc. Natl. Acad. Sci. USA 111, pp. 4001–4006. DOI: https://doi.org/10.1073/pnas.1313490111.

Klaedtke, S M et al. (2012). “Photosynthate remobilization capacity from drought-adapted common bean (Phaseolus vulgaris L.) lines can improve yield potential of interspecific populations within the secondary gene pool”. J. Plant Breed. & Crop Sci 4, pp. 49–61. DOI: https://doi.org/10.5897/JPBCS11.087.

Koinange, E M K and P Gepts (1992). “Hybrid weakness in wild Phaseolus vulgaris L”. J. Hered 83, pp. 135–139. DOI: https://doi.org/10.1093/oxfordjournals.jhered.a111173.

Koo, B W, P G Pardey, and D G Debouck (2004). “CIAT genebank”. In: Saving seeds - The economics of conserving crop genetic resources ex situ in the Future Harvest Centres of the CGIAR. Ed. by B. W. Koo, P. G. Pardey, and B. D. Wright. Vol. 13. Wallingford, United Kingdom: CABI Publishing, pp. 105–125.

Kornegay, J and C Cardona (1991). “Breeding for insect resistance in beans”. In: Common beans: research for crop improvement. Ed. by A. van Schoonhoven and O. Voysest. Wallingford, United Kingdom: CABI, pp. 619–648.

Ku, H K and S H Ha (2020). “Improving nutritional and functional quality by genome editing of crops: status and perspectives”. Front. Plant Sci 11, pp. 1–14. DOI: https://doi/10.3389/fpls.2020.577313.

Kumar, P L et al. (2021). “Phytosanitary interventions for safe global germplasm exchange and the prevention of transboundary pest spread: the role of CGIAR germplasm health units”. Plants 10, pp. 1–29. DOI: https://doi.org/10.3390/plants10020328.

Kuzay, S et al. (2020). “Is the USDA core collection of common bean representative of genetic diversity of the species, as assessed by SNP diversity?” Crop Sci 60, pp. 1398–1414. DOI: https://doi.org/10.1002/csc2.20032.

Kwak, M and P Gepts (2009). “Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae)”. Theor. Appl. Genet 118, pp. 979–992. DOI: https://doi.org/10.1007/s00122-008-0955-4.

Kwak, M, J A Kami, and P Gepts (2009). “The putative Mesoamerican domestication center of Phaseolus vulgaris is located in the Lerma-Santiago basin of Mexico”. Crop Sci 49, pp. 554–563. DOI: https://doi.org/10.2135/cropsci2008.07.0421.

Larsen, R C and P N Miklas (2004). “Generation and molecular mapping of a sequence characterized amplified region marker linked with the Bct gene for resistance to Beet Curly Top Virus in common bean”. Phytopathology 94, pp. 320–325. DOI: https://doi.org/10.1094/PHYTO.2004.94.4.320.

Lépiz-Ildefonso, R and F J Navarro-Sandoval (1983). “Fríjol en el noroeste de México (tecnología de producción)”. In: Culiacán, Sinaloa, México: Instituto Nacional de Investigaciones Agrícolas. Secretaría de Agricultura y Recursos Hidráulicos, pp. 1–69.

Liebenberg, M M, C M S Mienie, and Z A Pretorius (2006). “The occurrence of rust resistance gene Ur-13 in common bean cultivars and lines”. Euphytica 150, pp. 365–386. DOI: https://doi.org/10.1007/s10681-006-9123-6.

Lobaton, J D et al. (2018). “Resequencing of common bean identifies regions of inter-gene pool introgression and provides comprehensive resources for molecular breeding”. The Plant Genome 11, pp. 1–21. DOI: https://doi.org/10.3835/plantgenome2017.08.0068.

Lobell, D B and S M Gourdji (2012). “The influence of climate change on global crop productivity”. Plant Physiol 160, pp. 1686–1697. DOI: https://doi.org/10.1104/pp.112.208298.

Lyman, J (1984). “Progress and planning for germplasm conservation of major food crops”. FAO/IBPGR Plant Genet. Resources Newsl 60, pp. 3–21. URL:


Lynam, J and D Byerlee (2017). “Forever pioneers - CIAT: 50 years contributing to a sustainable food future . . . and counting. CIAT Publication No. 444”. In: Cali, Colombia: International Center for Tropical Agriculture (CIAT), pp. 1–140. URL: https://hdl.handle.net/10568/89043.

Lynch, J et al. (1992). “Variation in characters related to leaf photosynthesis in wild bean populations”. Crop Sci 32, pp. 633–640. DOI: https://doi.org/10.2135/cropsci1992.0011183X003200030012x.

Mahuku, G S et al. (2002). “Sources of resistance to Colletotrichum lindemuthianum in the secondary gene pool of Phaseolus vulgaris and in crosses of primary and secondary gene pools”. Plant Dis 86, pp. 1383–1387. DOI: https://doi.org/10.1094/PDIS.2002.86.12.1383.

Mahuku, G S et al. (2003). “Sources of resistance to angular leaf spot (Phaeoisariopsis griseola) in common bean core collection, wild Phaseolus vulgaris and secondary gene pool”. Euphytica 130, pp. 303–313. DOI: https://doi.org/10.1094/PDIS.2002.86.12.1383.

Mamidi, S et al. (2011). “Investigation of the domestication of common bean (Phaseolus vulgaris) using multilocus sequence data”. Functional Plant Biol 38, pp. 953–967. DOI: https://doi.org/10.1071/FP11124.

Martin, G B and M W Adams (1987). “Landraces of Phaseolus vulgaris (Fabaceae) in northern Malawi. 1. Regional variation”. Econ. Bot 41, pp. 190–203. DOI: https://doi.org/10.1007/BF02858965.

Martínez-Castillo, J, R Andueza-Noh, and M I Chacón-Sánchez (2015). “Recent advances in the study of the evolution of Lima bean (Phaseolus lunatus L.) in Mexico”. In: Phaseolus lunatus: diversity, growth and production. Ed. by A. S. Ferreira de Araujo, A. Celis de Almeida Lopes, and R. L. Ferreira Gomes. New York, USA: Nova Science Publishers, Inc, pp. 43–62.

McCouch, S R et al. (2012). “Genomics of gene banks: a case study in rice”. Amer. J. Bot 99, pp. 407–423. DOI: https://doi.org/10.3732/ajb.1100385.

Mejía-Jiménez, A et al. (1994). “Interspecific hybridization between common bean and tepary bean: increased hybrid embryo growth, fertility, and efficiency of hybridization through recurrent and congruity backcrossing”. Theor. Appl. Genet 88, pp. 324–331. DOI: https://doi.org/10.1007/BF00223640.

Melotto, M and J D Kelly (2000). “An allelic series at the Co-1 locus conditioning resistance to anthracnose in common bean of Andean origin”. Euphytica 116, pp. 143–149. DOI: https://doi.org/10.1023/A:1004005001049.

Michaels, T E et al. (2006). “OAC Rex common bean”. Can. J. Plant Sci 86, pp. 733–736. DOI: https://doi.org/10.4141/P05-128.

Miklas, P N, D P Coyne, et al. (2003). “A major QTL for common bacterial blight resistance derives from the common bean Great Northern landrace cultivar Montana No. 5”. Euphytica 131, pp. 137–146. DOI: https://doi.org/10.1023/A:1023064814531.

Miklas, P N, J D Kelly, et al. (2006). “Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding”. Euphytica 147, pp. 105–131. DOI: https://doi.org/10.1007/978-94-015-9211-6_11.

Mina-Vargas, A M et al. (2016). “Origin of year-long bean (Phaseolus dumosus Macfady., Fabaceae) from reticulated hybridization events between multiple Phaseolus species”. Ann. Bot 118, pp. 957–969. DOI: https://doi.org/10.1093/aob/mcw138.

Moghaddam, S M, S Mamidi, et al. (2016). “Genome-wide association study identifies candidate loci underlying agronomic traits in a Middle American diversity panel of common bean”. The Plant Genome 9, pp. 1–21. DOI: https://doi.org/10.3835/plantgenome2016.02.0012.

Moghaddam, S M, A Oladzad, et al. (2021). “The tepary bean genome provides insight into evolution and domestication under heat stress”. Nature Communic 12, pp. 1–14. DOI: https://doi.org/10.1038/s41467-021-22858-x.

Montoya, C A et al. (2008). “Susceptibility of phaseolin to in vitro proteolysis is highly variable across common bean varieties (Phaseolus vulgaris)”. J. Agric. Food Chem 56, pp. 2183–2191. DOI: https://doi.org/10.1021/jf072576e.

Motta-Aldana, J R et al. (2010). “Multiple origins of Lima bean landraces in the Americas: evidence from chloroplast and nuclear DNA polymorphisms”. Crop Sci 50, pp. 1773–1787. DOI: https://doi.org/10.2135/cropsci2009.12.0706.

Myers, J R and J R Baggett (1999). “Improvement of snap bean”. In: Common bean improvement in the twenty-first century. Ed. by S P Singh. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 289–329. DOI: https://doi.org/10.1007/978-94-015-9211-6_11.

National Research Council (1989). Lost crops of the Incas: little-known plants of the Andes with promise for worldwide cultivation. Washington, D.C., USA: National Academy Press. DOI: https://doi.org/10.17226/1398.

Navabi, A et al. (2012). “Contribution of genetic improvement in yield increase and disease resistance in Navy beans released in central Canada since 1930’s”. Annu. Rept. Bean Improvem. Coop. (USA) 55, pp. 113–114.

Nienhuis, J and S P Singh (1986). “Combining ability analyses and relationships among yield, yield components, and architectural traits in dry bean”. Crop Sci 26, pp. 21–27. DOI: https://doi.org/10.2135/cropsci1986.0011183X002600010005x.

OECD (2015). Consensus document on compositional considerations for new varieties of common bean (Phaseolus vulgaris L.): key food and feed nutrients, anti-nutrients and other constituents. Vol. 27. Series on the Safety of Novel Foods and Feeds. Paris, France, pp. 1–49. URL: https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/ mono(2015)49&doclanguage=en.

Osborn, T C et al. (1988). “Insecticidal activity and lectin homology of arcelin seed protein”. Science 240, pp. 207–210. DOI: https://doi.org/10.1126/science.240.4849.207.

Otálora, J M, G A Ligarreto, and A Romero (2006). “Comportamiento de fríjol común (Phaseolus vulgaris L.) tipo reventón por características agronómicas y de calidad de grano”. Agron. Colomb 24. (in Spanish), pp. 7–16.

Pallottini, L et al. (2004). “The genetic anatomy of a patented yellow bean”. Crop Sci 44, pp. 968–977. DOI: https://doi.org/10.2135/cropsci2004.9680.

Parker, T A et al. (2020). “Pod indehiscence is a domestication and aridity resilience trait in common bean”. New Phytol 225, pp. 558–570. DOI: https://doi.org/10.1111/nph.16164.

Pastor-Corrales, M A, C Jara, and S P Singh (1998). “Pathogenic variation in, sources of, and breeding for resistance to Phaeoisariopsis griseola causing angular leaf spot in common bean”. Euphytica 103, pp. 161–171. DOI: https://doi.org/10.1023/A:1018350826591.

Piperno, D L and T D Dillehay (2008). “Starch grains on human teeth reveal early broad crop diet in northern Peru”. Proc. Natl. Acad. Sci. USA 105, pp. 19622–19627. DOI: https://doi.org/10.1073/pnas.0808752105.

Porch, T G et al. (2013). “Use of wild relatives and closely related species to adapt common bean to climate change”. Agronomy 3, pp. 433–461. DOI: https://doi.org/10.3390/agronomy3020433.

Rachie, K O (1973). “Relative agronomic merits of various food legumes for the lowland tropics”. In: Potentials of field beans and other food legumes in Latin America. Ed. by D. Wall. Cali, Colombia: Centro Internacional de Agricultura Tropical, pp. 123–139. URL: https://ufdc.ufl.edu/UF00082052/00001.

Ramírez-Villegas, J, C Khoury, H A Achicanoy, et al. (2020). “A gap analysis modelling framework to prioritize collecting for ex situ conservation of crop landraces”. Diversity & Distributions 26, pp. 730–742. DOI: https://doi.org/10.1111/ddi.13046.

Ramírez-Villegas, J, C Khoury, A Jarvis, et al. (2010). “A gap analysis methodology for collecting crop genepools: a case study with Phaseolus beans”. PLoS ONE Biology 5, pp. 1–18.

Rao, I M (2001). “Role of physiology in improving crop adaptation to abiotic stresses in the tropics: the case of common bean and tropical forages”. In: Handbook of plant and crop physiology. Ed. by M. Pessarakli. New York, USA: Marcel Dekker, Inc. DOI: https://doi.org/10.1201/9780203908426.

Rao, I et al. (2013). “Can tepary bean be a model for improvement of drought resistance in common bean? ” Afric Crop Sci. J 21, pp. 265–281. URL: https://www.ajol.info/index.php/acsj/article/view/95291.

Rendón-Anaya, M et al. (2017). “Genomic history of the origin and domestication of common bean unveils its closest sister species”. Genome Biol 18, pp. 1–17. DOI: https://doi.org/10.1186/s13059-017-1190-6.

Salcedo-Castaño, J et al. (2011). “Phaseolus hygrophilus (Leguminosae-Papilionoideae), a new wild bean species from the wet forests of Costa Rica, with notes about section Brevilegumeni”. J. Bot. Res. Inst. Texas 5, pp. 53–65. URL: https://journals.brit.org/jbrit/article/download/953/871/.

Sanders, J H and H F Schwartz (1980). “La producción de fríjol y limitaciones impuestas por las plagas en América Latina”. In: Problemas de producción del fríjol: enfermedades, insectos, limitaciones edáficas y climáticas de Phaseolus vulgaris. Ed. by H. F. Schwartz and G. E. Gálvez. Cali, Colombia: Centro Internacional de Agricultura Tropical, pp. 1–14.

Schaafsma, A W et al. (1998). “Resistance of common bean lines to the potato leafhopper (Homoptera: Cicadellidae)”. J. Econ. Entomol 91, pp. 981–986. DOI: https://doi.org/10.1093/jee/91.4.981.

Schinkel, C and P Gepts (1988). “Phaseolin diversity in the tepary bean Phaseolus acutifolius A. Gray”. Plant Breeding 101, pp. 292–301. DOI: https://doi.org/10.1111/j.1439-0523.1988.tb00301.x.

Schmit, V and J. -P Baudoin (1992). “Screening for resistance to Ascochyta blight in populations of Phaseolus coccineus L. and P. polyanthus Greenman”. Field Crops Res 30, pp. 155–165. DOI: https://doi.org/10.1016/0378-4290(92)90064-G.

Schmit, V and D G Debouck (1991). “Observations on the origin of Phaseolus polyanthus Greenman”. Econ. Bot 45, pp. 345–364. DOI: https://doi.org/10.1007/BF02887077.

Schmit, V, D G Debouck, and J. -P Baudoin (1996). “Biogeographical and molecular observations on Phaseolus glabellus (Fabaceae, Phaseolinae) and its taxonomic status”. Taxon 45, pp. 493–501. DOI: https://doi.org/10.2307/1224141.

Schmutz, J et al. (2014). “A reference genome for common bean and genome-wide analysis of dual domestications”. Nature Genet 46, pp. 707–713. DOI: https://doi.org/10.1038/ng.3008.

Schwartz, H F (1989). “Halo blight”. In: Bean production problems in the tropics. Ed. by F. Schwartz and M. A. Pastor-Corrales. Cali, Colombia: Centro Internacional de Agricultura Tropical, pp. 285–301.

Schwartz, H F, M A Pastor-Corrales, and S P Singh (1982). “New sources of resistance to anthracnose and angular leaf spot of beans (Phaseolus vulgaris L.)” Euphytica 31, pp. 741–754. DOI: https://doi.org/10.1007/BF00039213.

Schwartz, H F and S P Singh (2013). “Breeding common bean for resistance to white mold: a review”. Crop Sci 53, pp. 1832–1844. DOI: https://doi.org/10.2135/cropsci2013.02.0081.

Sellitti, S et al. (2020). “The contribution of the CIAT genebank to the development of iron-biofortified bean varieties and well-being of farm households in Rwanda”. Food Security 12, pp. 975–991. DOI: https://doi.org/10.1007/s12571-020-01038-7.

Silbernagel, M J et al. (1991). “Snap bean production in the tropics: implications for genetic improvement”. In: Common beans: research for crop improvement. Ed. by A. van Schoonhoven and O. Voysest. Wallingford, United Kingdom: CABI, pp. 835–862.

Singh, S P (1992). “Common bean improvement in the tropics”. Plant Breeding Reviews 10, pp. 199–269. DOI: https://doi.org/10.1002/9780470650011.

Singh, S P (1999). “Production and utilization”. In: Common bean improvement in the twenty-first century. Ed. by S P Singh. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 1–24. DOI: https://doi.org/10.1007/978-94-015-9211-6_11.

Singh, S P (2001). “Broadening the genetic base of common bean cultivars: a review”. Crop Sci 41, pp. 1659–1675. DOI: https://doi.org/10.2135/cropsci2001.1659.

Singh, S P (2007). “Drought resistance in the race Durango dry bean landraces and cultivars”. Agron. J 99, pp. 1219–1225. DOI: https://doi.org/10.2134/agronj2006.0301.

Singh, S P, P Gepts, and D G Debouck (1991). “Races of common bean (Phaseolus vulgaris, Fabaceae)”. Econ. Bot 45, pp. 379–396. DOI: https://doi.org/10.1007/BF02887079.

Singh, S P and J A Gutiérrez (1984). “Geographical distribution of the DL1 and DL2 genes causing hybrid dwarfism in Phaseolus vulgaris L., their association with seed size, and their significance to breeding”. Euphytica 33, pp. 337–345. DOI: https://doi.org/10.1007/BF02887079.

Singh, S P and A Molina (1996). “Inheritance of crippled trifoliolate leaves occurring in interracial crosses of common bean and its relationship with hybrid dwarfism”. J. Hered 87, pp. 464–469. DOI: https://doi.org/10.1093/oxfordjournals.jhered.a023039.

Singh, S P, A Molina, et al. (1993). “Use of interracial hybridization in breeding the race Durango common bean”. Can. J. Plant Sci 73, pp. 785–793. DOI: https://doi.org/10.4141/cjps93-101.

Singh, S P, F J Morales, et al. (2000). “Selection for Bean Golden Mosaic resistance in intra- and interracial bean populations”. Crop Sci 40, pp. 1565–1572. DOI: https://doi.org/10.2135/cropsci2000.4061565x.

Singh, S P and C G Muñoz (1999). “Resistance to common bacterial blight among Phaseolus species and common bean improvement”. Crop Sci 39, pp. 80–89. DOI: https://doi.org/10.2135/cropsci1999.0011183X003900010013x.

Singh, S P, R Nodari, and P Gepts (1991). “Genetic diversity in cultivated common bean: 1. Allozymes”. Crop Sci 31, pp. 19–29. DOI: https://doi.org/10.2135/cropsci1991.0011183X003100010004x.

Singh, S P and H F Schwartz (2010). “Breeding common bean for resistance to diseases: a review”. Crop Sci 50, pp. 2199–2223. DOI: https://doi.org/10.1007/s10681-006-4600-5.

Singh, S P, H Terán, H F Schwartz, K Otto, D G Debouck, et al. (2013). “White mold-resistant, interspecific common bean breeding line VRW32 derived from Phaseolus costaricensis”. J. Plant Registr 7, pp. 95–99. DOI: https://doi.org/10.3198/jpr2012.02.0131crg.

Singh, S P, H Terán, H F Schwartz, K Otto, and M Lema (2009). “Introgressing white mold resistance from Phaseolus species of the secondary gene pool into common bean”. Crop Sci 49, pp. 1629–1637. DOI: https://doi.org/10.2135/cropsci2008.08.0508.

Singh, S P and C A Urrea (1995). “Inter- and intraracial hybridization and selection for seed yield in early generations of common bean, Phaseolus vulgaris L.” Euphytica 81, pp. 131–137. DOI: https://doi.org/10.1007/BF00025424.

Sonnante, G et al. (1994). “Evolution of genetic diversity during the domestication of common bean (Phaseolus vulgaris L.)” Theor. Appl. Genet 89, pp. 629–635. DOI: https://doi.org/10.1007/BF00222458.

Stavely, J R (1984). “Pathogenic specialization in Uromyces phaseoli in the United States and rust resistance in beans”. Plant Dis 68, pp. 95–99. DOI: https://doi.org/10.1094/PD-68-95.

Stavely, J R and M A Pastor-Corrales (1989). “Rust”. In: Bean production problems in the tropics. Ed. by H. F. Schwartz and M. A. Pastor-Corrales. Cali, Colombia: Centro Internacional de Agricultura Tropical, pp. 159–194.

Suárez, J C et al. (2020). “Adaptation of common bean lines to high temperature conditions: genotypic differences in phenological and agronomic performance”. Euphytica 216, pp. 28–47. DOI: https://doi.org/10.1007/s10681-020-2565-4.

Tanksley, S D et al. (1996). “Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium”. Theor. Appl. Genet 92, pp. 213–224. DOI: https://doi.org/10.1007/BF00223378.

Taylor, J D, D M Teverson, and J H C Davis (1996). “Sources of resistance to Pseudomonas syringae pv. phaseolicola races in Phaseolus vulgaris”. Plant Pathol 45, pp. 479–485. DOI: https://doi.org/10.1046/j.1365-3059.1996.d01-148.x.

Thomas, C V, R M Manshardt, and J G Waines (1983). “Teparies as a source of useful traits for improving common beans”. Desert Plants 5, pp. 43–48. URL: http://hdl.handle.net/10150/552200.

Thung, M (1991). “Bean agronomy in monoculture”. In: Common beans: research for crop improvement. Ed. by A. van Schoonhoven and O. Voysest. Wallingford, UK: CABI, pp. 737–834.

Tohme, J, P Jones, et al. (1995). “The combined use of agroecological and characterization data to establish the CIAT Phaseolus vulgaris core collection”. In: Core collection of plant genetic resources. Ed. by T. Hodgkin et al. Chichester, UK: John Wiley and Sons, pp. 95–107.

Tohme, J, O Toro-Chica, et al. (1995). “Variability in Andean nuña common bean (Phaseolus vulgaris, Fabaceae)”. Econ. Bot 49, pp. 78–95. DOI: https://doi.org/10.1007/BF02862280.

Urrea, C A and R M Harveson (2014). “Identification of sources of bacterial wilt resistance in common bean (Phaseolus vulgaris)”. Plant Dis 98, pp. 973–976. DOI: http://dx.doi.org/10.1094/PDIS-04-13-0391-RE.

Van Hintum, T, F Menting, and E van Strien (2011). “Quality indicators for passport data in ex situ genebanks”. Plant Genet. Resour. Character. Utiliz 9, pp. 478–485. DOI: https://doi.org/10.1017/S1479262111000682.

van Schoonhoven, A and C Cardona (1982). “Low levels of resistance to the Mexican bean weevil in dry beans”. J. Econ. Entomol 75, pp. 567–569. DOI: https://doi.org/10.1093/jee/75.4.567.

van Schoonhoven, A, C Cardona, and J Valor (1983). “Resistance to the bean weevil and the Mexican bean weevil (Coleoptera: Bruchidae) in non cultivated common bean accessions”. J. Econ. Entomol 76, pp. 1255–1259. DOI: https://doi.org/10.1093/jee/76.6.1255.

van Treuren, R and T J L van Hintum (2014). “Next-generation genebanking: plant genetic resources management and utilization in the sequencing era”. Plant Genet. Resour. Charact. Utiliz 12, pp. 298–307. DOI: https://doi.org/10.1017/S1479262114000082.

Vieira, C (1973). “Plant introduction and germplasm of Phaseolus vulgaris and other food legumes”. In: Potentials of field beans and other food legumes in Latin America. Ed. by D. Wall. Centro Internacional de Agricultura Tropical, pp. 239–252. URL: https://ufdc.ufl.edu/UF00082052/00001.

Vlasova, A et al. (2016). “Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes”. Genome Biol 17, pp. 1–18. DOI: https://doi.org/10.1186/s13059-016-0883-6.

Voysest, O and M Dessert (1991). “Bean cultivars: classes and commercial seed types”. In: Common beans: research for crop improvement. Ed. by A. van Schoonhoven and O. Voysest. Wallingford, UK: CABI, pp. 119–162.

Voysest-Voysest, O (1983). Variedades de frijol en América Latina y su origen. (in Spanish). Cali, Colombia: Centro Internacional de Agricultura Tropical.

Voysest-Voysest, O (2000). Mejoramiento genético del frijol (Phaseolus vulgaris L.) - Legado de variedades de América Latina 1930-1999. Cali, Colombia: Centro Internacional de Agricultura Tropical.

White, J W and D R Laing (1989). “Photoperiod response of flowering in diverse genotypes of common bean (Phaseolus vulgaris)”. Field Crops Res 22, pp. 113–128. DOI: https://doi.org/10.1016/0378-4290(89)90062-2.

Williams, J W, S T Jackson, and J E Kutzbach (2007). “Projected distributions of novel and disappearing climates by 2100 AD”. Proc. Natl. Acad. Sci. USA 104, pp. 5738–5742. DOI: https://doi.org/10.1073/pnas.0606292104.

Xu, H et al. (2020). “Progresses, challenges, and prospects of genome editing in soybean (Glycine max)”. Front. Plant Sci 11, pp. 1–19. DOI: https://doi.org/10.3389/fpls.2020.571138.

Young, R A and J D Kelly (1996). “Characterization of the genetic resistance to Colletotrichum lindemuthianum in common bean differential cultivars”. Plant Dis 80, pp. 650–654. DOI: https://doi.org/10.1094/PD-80-0650.

Yuste-Lisbona, F J et al. (2012). “Marker-based linkage map of Andean common bean (Phaseolus vulgaris L.) and mapping of QTLs underlying popping ability traits”. BMC Plant Biology 12, pp. 1–16. DOI: https://doi.org/10.1186/1471-2229-12-136.

Zambre, M et al. (2005). “A reproducible genetic transformation system for cultivated Phaseolus acutifolius (tepary bean) and its use to assess the role of arcelins in resistance to the Mexican bean weevil”. Theor. Appl. Genet 110, pp. 914–924. DOI: https://doi.org/10.1007/s00122-004-1910-7.

Zapata, M, G F Freytag, and R E Wilkinson (1985). “Evaluation for bacterial blight resistance in beans”. Phytopathology 75, pp. 1032–1039. DOI: https://doi.org/10.1094/Phyto-75-1032.

Zaugg, I et al. (2013). “QUES, a new Phaseolus vulgaris genotype resistant to common bean weevils, contains the arcelin-8 allele coding for new lectin-related variants”. Theor. Appl. Genet 126, pp. 647–661. DOI: https://doi.org/10.1007/s00122-012-2008-2.

Zaumeyer, W J and H R Thomas (1957). A monographic study of bean diseases and methods for their control. Vol. 868. Technical Bulletin. Washington, D.C. DOI: https://doi.org/10.22004/ag.econ.169625.

Zeven, A C (1997). “The introduction of the common bean (Phaseolus vulgaris L.) into Western Europe and the phenotypic variation of dry beans collected in the Netherlands in 1946”.

Euphytica 94, pp. 319–328. DOI: https://doi.org/10.1023/A:1002940220241.

Zhao, C et al. (2019). “Crop phenomics: current status and perspectives”. Front. Plant Sci 10, pp. 1–16. DOI: https://doi.org/10.3389/fpls.2019.00714.

Zimmerer, K S (1992). “Biological diversity and local development”. Mountain Res. Dev 12, pp. 47–61. DOI: https://doi.org/10.2307/3673747.