Solanum wild relative species indicate varying ecological resilience to climate change in Benin (West Africa)

Main Article Content

Ahuéfa Mauricel Kégbé
Rodrigue Idohou
https://orcid.org/0000-0003-2641-6832
Birane Dieng
Gafarou Agounde
Anthony Egeru
Kandioura Noba
Achille Ephrem Assogbadjo
https://orcid.org/0000-0001-5985-8800

Abstract

Crop wild relatives are rich reservoirs of valuable genes for improving crop yields, but they have long been underestimated and neglected. Unfortunately, these resources are severely threatened in their natural habitats due to increasing stress caused by climate change and human disturbance. Recently, these wild species began receiving increasing attention for their effective inventory and sustainable conservation and use for the benefit of humanity. This study investigated the current distribution and forecasted the potential future climate change impact on ten Solanum wild relative species in Benin, assessed the effectiveness of protected areas in maintaining viable populations, and evaluated their conservation status using the International Union for Conservation of Nature Categories and Criteria. We used species distribution models under two socioeconomic pathways SSP370 and SSP585 projecting species ranges for the 2055 and 2085 time horizons. The models demonstrated high accuracy with an average value of the Area Under the Curve and True Skill Statistic of 0.89 and 0.74, respectively. The most suitable areas were located in the Sudano-Guinean and Guineo-Congolian zones of Benin. Furthermore, a significant proportion of these suitable areas is projected to become unsuitable for most wild Solanum species. Surprisingly, most of the identified hotspots were poorly represented within the existing protected area network, which appears insufficient to provide long-term refugia for the species. Nevertheless, new suitable areas were identified outside the current protected zones. Coordinated efforts are urgently needed to sustainably manage the populations of target species to enhance their future persistence in Benin.

 

 

Article Details

How to Cite
Kégbé, A. M., Idohou, R., Dieng, B., Agounde, G., Egeru, A., Noba, K. and Assogbadjo, A. E. (2025) “Solanum wild relative species indicate varying ecological resilience to climate change in Benin (West Africa)”, Genetic Resources, 6(12), pp. 95–110. doi: 10.46265/genresj.ZRCI8675.
Section
Original Articles
References

Abdul Aziz S., Émeline Sêssi Pelagie A., Séverin B., Ogoulonou Rodrigue B., Bertrand A., Samadori Sorotori Honoré B. (2024). Land use/land cover and plant community dynamics in the Benin's forest reserves: The effectiveness of participatory forest management Trees, Forests and People 16: 100543. https://doi.org/10.1016/j.tfp.2024.10054 DOI: https://doi.org/10.1016/j.tfp.2024.100543

Adomou, A. (2005). Vegetation patterns and environmental gradients in Benin: implications for biogeography and conservation. Ph.D. Thesis, Wageningen University, The Netherlands.

Adomou, A. C., Yedomonhan, H., Sinsin, B., and Van der Maesen, L. J. G. (2007). Distribution des aires protégées et conservation de la flore en république du Bénin: Notulae Florae Beninensis 11. DOI: https://doi.org/10.4000/books.irdeditions.8063

Agounde, G., Salako, K.V., Idohou, R.A., Sode, A.I., Mensah, S., Dimobe, K., Assogbadjo, A.E., Glèlè Kakaï, R. (2025). Climate change may shift diet of the African savanna elephant: Preliminary results for 14 food tree and shrub species in the WAPOK transboundary ecosystem, West-Africa. Global Ecology and Conservation, 58, p.e03468. https://doi.org/10.1016/j.gecco.2025.e03468 DOI: https://doi.org/10.1016/j.gecco.2025.e03468

Ahmad, S., Yang, L., Khan, T. U., Wanghe, K., Li, M. and Luan, X. (2020). Using an ensemble modelling approach to predict the potential distribution of Himalayan gray goral (Naemorhedus goral bedfordi) in Pakistan. Glob. Ecol. Conserv., 21, e00845. doi: https://doi.org/10.1016/j.gecco.2019.e00845 DOI: https://doi.org/10.1016/j.gecco.2019.e00845

Akoègninou, A., van der Burg, W. and van der Maesen, L. (2006). Flore Analytique du Bénin: Wageningen: Backhuys Publishers

Aksoy, E., Demirel, U., Bakhsh, A., Zia, M. A. B., Naeem, M., Saeed, F., ... and Çalışkan, M. E. (2021). Recent advances in potato (Solanum tuberosum L.) breeding. Advances in Plant Breeding Strategies: Vegetable Crops: Volume 8: Bulbs, Roots and Tubers, 409-487. https://doi.org/10.1007/978-3-030-66965-2_10 DOI: https://doi.org/10.1007/978-3-030-66965-2_10

Allouche, O., Tsoar, A. and Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol., 43(6), 1223-1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x DOI: https://doi.org/10.1111/j.1365-2664.2006.01214.x

Alohou, E. C., Gbemavo, D. S. J. C., Mensah, S., and Ouinsavi, C. (2017). Fragmentation of forest ecosystems and connectivity between Sacred Groves and Forest Reserves in southeastern Benin, West Africa. Tropical Conservation Science, 10, 1940082917731730. DOI: https://doi.org/10.1177/1940082917731730

Barbet-Massin, M., Jiguet, F., Albert, C.H. and Thuiller, W. (2012), Selecting pseudo-absences for species distribution models: how, where and how many?. Methods in Ecology and Evolution, 3: 327-338. https://doi.org/10.1111/j.2041-210X.2011.00172.x DOI: https://doi.org/10.1111/j.2041-210X.2011.00172.x

Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., Bekki, S., Bonnet, R., Bony, S. and Bopp, L. (2020). Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst., 12(7), e2019MS002010. doi: https://doi.org/10.1029/2019MS002010 DOI: https://doi.org/10.1029/2019MS002010

Brehm, J., Gaisberger, H., Kell, S., Parra-Quijano, M., Thormann, I., Dulloo, M. E., and Maxted, N. (2022). Planning complementary conservation of crop wild relative diversity in southern Africa. Diversity and Distributions, 28, 1358–1372. https://doi.org/10.1111/ddi.13512 DOI: https://doi.org/10.1111/ddi.13512

Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. doi:https://doi.org/10.1023/A:1010933404324 DOI: https://doi.org/10.1023/A:1010933404324

Brooks, T. M., Pimm, S. L., Akçakaya, H. R., Buchanan, G. M., Butchart, S. H., Foden, W., Hilton-Taylor, C., Hoffmann, M., Jenkins, C. N. and Joppa, L. (2019). Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol., 34(11), 977-986. doi: https://doi.org/10.1016/j.tree.2019.06.009 DOI: https://doi.org/10.1016/j.tree.2019.06.009

Brown, J. L. (2014). SDM toolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol., 5(7), 694-700. https://doi.org/10.1111/2041-210X.12200 DOI: https://doi.org/10.1111/2041-210X.12200

Brunton, A. J., Conroy, G. C., Schoeman, D. S., Rossetto, M. and Ogbourne, S. M. (2023). Seeing the forest through the trees: Applications of species distribution models across an Australian biodiversity hotspot for threatened rainforest species of Fontainea. Glob. Ecol. Conserv., 42, e02376. doi:https://doi.org/10.1016/j.gecco.2023.e02376 DOI: https://doi.org/10.1016/j.gecco.2023.e02376

Burgess, N., Küper, W., Mutke, J., Brown, J., Westaway, S., Turpie, S., Meshack, C., Taplin, J., McClean, C. and Lovett, J. C. (2005). Major gaps in the distribution of protected areas for threatened and narrow range Afrotropical plants. Biodivers. Conserv., 14, 1877-1894. doi:https://doi.org/10.1007/S40531-004-1299-2 DOI: https://doi.org/10.1007/s10531-004-1299-2

Bussmann, R.W., Paniagua-Zambrana, N.Y., and Njoroge, G.N. (2021). Solanum aculeastrum Dunal Solanum anguivi Lam. Solanum incanum L. Solanum nigrum L. Solanaceae. In: Bussmann, R.W. (eds) Ethnobotany of the Mountain Regions of Africa. Ethnobotany of Mountain Regions. Springer, Cham. https://doi.org/10.1007/978-3-030-38386-2 DOI: https://doi.org/10.1007/978-3-030-38386-2_146

Castañeda-Álvarez, N. P., De Haan, S., Juárez, H., Khoury, C. K., Achicanoy, H. A., Sosa, C. C., ... and Spooner, D. M. (2015). Ex situ conservation priorities for the wild relatives of potato (Solanum L. section Petota). PLoS One, 10(4), e0122599. https://doi.org/10.1371/journal.pone.0122599 DOI: https://doi.org/10.1371/journal.pone.0122599

Chérif, A., Sodé, A., Houndonougbo, J., Idohou, R., Fandohan, A., Kakaï, R. G. and Assogbadjo, A. (2022). Habitat suitability modeling for the conservation and cultivation of the multipurpose fruit tree, Balanites aegyptiaca L., in the Republic of Chad, Sahel. Model. Earth Syst. Environ., 8(4), 4953-4963. doi:https://doi.org/10.1007/s40808-022-01416-4 DOI: https://doi.org/10.1007/s40808-022-01416-4

Chinedu, S. N., Olasumbo, A. C., Eboji, O. K., Emiloju, O. C., Arinola, O. K. and Dania, D. I. (2011). Proximate and phytochemical analyses of Solanum aethiopicum L. and Solanum macrocarpon L. fruits. Research Journal of Chemical Sciences, 1(3), 63-71.

Coulibaly M., Idohou R., Akohoue F., Peterson A.T., Sawadogo M., and Achigan-Dako E.G. (2021). (2022). Coupling genetic structure analysis and ecological-niche modeling in Kersting’s groundnut in West Africa. Scientific reports, 12(1), 5590. DOI: https://doi.org/10.1038/s41598-022-09153-5

Daï, E. H., Houndonougbo, J. S. H., Idohou, R., Ouédraogo, A., Kakaï, R. G., Hotes, S. and Assogbadjo, A. E. (2023). Modeling current and future distribution patterns of Uvaria chamae in Benin (West Africa): Challenges and opportunities for its sustainable management. Heliyon, 9(2). doi:https://doi.org/10.1016/j.heliyon.2023.e13658 DOI: https://doi.org/10.1016/j.heliyon.2023.e13658

Dassou G.H, Agoundé G, Akouété P, Favi GA, Kpétikou GC, Salako K.V, Ouachinou J, Makponsè J, Kouyaté A.M, Sari I, Glèlè Kakaï R.L, Yédomonhan H, and Adomou A.C (2024) Past, present, and future potential distributions of the African multipurpose tree Detarium senegalense (Fabaceae). Plant Ecology and Evolution 157(3): 343-357. https://doi.org/10.5091/plecevo.122470 DOI: https://doi.org/10.5091/plecevo.122470

Davis, A. P., Chadburn, H., Moat, J., O’Sullivan, R., Hargreaves, S. and Nic Lughadha, E. (2019). High extinction risk for wild coffee species and implications for coffee sector sustainability. Sci. Adv., 5(1), eaav3473. doi:https://doi.org/10.1126/sciadv.aav3473 DOI: https://doi.org/10.1126/sciadv.aav3473

Fandohan, A. B., Oduor, A. M. O., Sodé, A. I., Wu, L., Cuni-Sanchez, A., Assédé, E. and Gouwakinnou, G. N. (2015). Modeling vulnerability of protected areas to invasion by Chromolaena odorata under current and future climates. Ecosyst. Health Sustain., 1(6), 1-12. doi:https://doi.org/10.1890/EHS45-0003.1 DOI: https://doi.org/10.1890/EHS15-0003.1

Feng, X., Liang, Y., Gallardo, B. and Papeş, M. (2020). Physiology in ecological niche modeling: using zebra mussel's upper thermal tolerance to refine model predictions through Bayesian analysis. Ecography, 43(2), 270-282. doi: https://doi.org/10.1111/ecog.04627 DOI: https://doi.org/10.1111/ecog.04627

Friedman, J., Hastie, T. and Tibshirani, R. (2000). ADDITIVE LOGISTIC REGRESSION: A STATISTICAL VIEW OF BOOSTING. Ann. Stat., 28(2), 337-407. doi:https://doi.org/10.1214/aos/1016218223 DOI: https://doi.org/10.1214/aos/1016120463

Gbètoho, A. J., Aoudji, A. K., Roxburgh, L. and Ganglo, J. C. (2017 ). Assessing the suitability of pioneer species for secondary forest restoration in Benin in the context of global climate change. Bois for. trop., 332, 43-55. doi:https://doi.org/10.19182/bft2017.332.a31332 DOI: https://doi.org/10.19182/bft2017.332.a31332

Gebhardt, C. (2016). The historical role of species from the Solanaceae plant family in genetic research. Theor. Appl. Genet., 129, 2281-2294. doi:https://doi.org/10.1007/s00122-016-2804-1 DOI: https://doi.org/10.1007/s00122-016-2804-1

Guisan, A., and Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology letters, 8(9), 993-1009. DOI: https://doi.org/10.1111/j.1461-0248.2005.00792.x

Hijmans, R. J. and Elith, J. (2017). Species distribution modeling with R. R Cran Project.

Hounsou-Dindin, G., Idohou, R., Agre, P., Hounkpèvi, A., Adomou, A. C., Assogbadjo, A. E. and Kakaï, R. G. (2023). Habitat range shift and prediction of the potential future distribution of Ricinodendron heudelotii (Baill.) Heckel in Benin (West Africa). Heliyon, 9(9). doi:https://doi.org/10.1016/j.heliyon.2023.e20199 DOI: https://doi.org/10.1016/j.heliyon.2023.e20199

Hudson, L. N., Newbold, T., Contu, S., Hill, S. L., Lysenko, I., De Palma, A., Phillips, H. R., Senior, R. A., Bennett, D. J. and Booth, H. (2014). The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. Ecol. Evol., 4(24), 4701-4735. doi: https://doi.org/10.1002/ece3.1303 DOI: https://doi.org/10.1002/ece3.1303

Hunter, D., Maxted, N., Heywood, V., Kell, S. and Borelli, T. (2012). Protected areas and the challenge of conserving crop wild relatives. Parks, 18(1), 87.

Idohou, R., Odoulami, R., Houehanou, T., & Assogbadjo, A. (2025). Top priority crop wild relatives exhibit different resilience responses to climate change in Benin (West Africa). Journal for Nature Conservation, 83, 126769. DOI: https://doi.org/10.1016/j.jnc.2024.126769

Idohou, R., Assogbadjo, A. E., Fandohan, B., Gouwakinnou, G. N., Glele Kakai, R. L., Sinsin, B., & Maxted, N. (2013). National inventory and prioritization of crop wild relatives: case study for Benin. Genetic Resources and Crop Evolution, 60, 1337-1352. DOI: https://doi.org/10.1007/s10722-012-9923-6

Idohou, R., Assogbadjo, A. E., Kakai, R. G. and Peterson, A. T. (2017). Spatio-temporal dynamic of suitable areas for species conservation in West Africa: eight economically important wild palms under present and future climates. Agrofor. Syst., 91, 527-540. doi:https://doi.org/10.1007/S40457-016-9955-6 DOI: https://doi.org/10.1007/s10457-016-9955-6

IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp. doi:https://doi.org/10.1017/9781009157896. DOI: https://doi.org/10.1017/9781009157896

IUCN (2024) The IUCN Red List of Threatened Species. Version 2024-2. https://www.iucnredlist.org ISSN 2307-8235

Jarvis, A., Lane, A. and Hijmans, R. J. (2008). The effect of climate change on crop wild relatives. Agric. Ecosyst. Environ., 126(1-2), 13-23. doi:https://doi.org/10.1016/j.agee.2008.01.013 DOI: https://doi.org/10.1016/j.agee.2008.01.013

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P. and Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Sci. Data, 4(1), 1-20. doi:https://doi.org/10.1038/sdata.2017.122 DOI: https://doi.org/10.1038/sdata.2017.122

Keatinge, J., Yang, R.-Y., Hughes, J. d. A., Easdown, W. and Holmer, R. (2011). The importance of vegetables in ensuring both food and nutritional security in attainment of the Millennium Development Goals. Food Secur., 3(4), 491-501. doi:https://doi.org/10.1007/S42571-011-0150-3 DOI: https://doi.org/10.1007/s12571-011-0150-3

Koebsch, F., Winkel, M., Liebner, S., Liu, B., Westphal, J., Schmiedinger, I., Spitzy, A., Gehre, M., Jurasinski, G. and Köhler, S. (2019). Sulfate deprivation triggers high methane production in a disturbed and rewetted coastal peatland. Biogeosciences, 16(9), 1937-1953. doi:https://doi.org/10.5194/bg-16-1937-2019 DOI: https://doi.org/10.5194/bg-16-1937-2019

Lala, S., Amri, A. and Maxted, N. (2018). Towards the conservation of crop wild relative diversity in North Africa: checklist, prioritisation and inventory. Genet. Resour. Crop Evol., 65(1), 113-124. doi:https://doi.org/10.1007/S40722-017-0513-5 DOI: https://doi.org/10.1007/s10722-017-0513-5

Le Saout, S., Hoffmann, M., Shi, Y., Hughes, A., Bernard, C., Brooks, T. M., Bertzky, B., Butchart, S. H., Stuart, S. N. and Badman, T. (2013). Protected areas and effective biodiversity conservation. Science, 342(6160), 803-805. doi:https://doi.org/10.1126/science.1239268 DOI: https://doi.org/10.1126/science.1239268

Lewis, J. S., Farnsworth, M. L., Burdett, C. L., Theobald, D. M., Gray, M. and Miller, R. S. (2017). Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Sci. Rep., 7(1), 44152. doi:https://doi.org/10.1038/srep44152 DOI: https://doi.org/10.1038/srep44152

MAEP. (2020). Indicateurs macroeconomiques sur le secteur agricole au Benin: Direction de la Statisque Agricole, Republique du Bénin.

Magioli, C., and Mansur, E. (2005). Eggplant (Solanum melongena L.): tissue culture, genetic transformation and use as an alternative model plant. Acta Botanica Brasilica, 19, 139-148. https://doi.org/10.1590/S0102-33062005000100013 DOI: https://doi.org/10.1590/S0102-33062005000100013

Manda, L., Idohou, R., Assogbadjo, A. E. and Agbangla, C. (2022). Climate change reveals contractions and expansions in the distribution of suitable habitats for the neglected crop wild relatives of the Genus Vigna (Savi) in Benin. Front. conserv. sci., 3, 870041. doi:https://doi.org/10.3389/fcosc.2022.870041 DOI: https://doi.org/10.3389/fcosc.2022.870041

Mao, L., Li, M. and Shen, W. (2020). Remote sensing applications for monitoring terrestrial protected areas: Progress in the last decade. Sustainability, 12(12), 5016. doi:https://doi.org/10.3390/su12125016 DOI: https://doi.org/10.3390/su12125016

Masson-Delmotte, V., Zhai, P., Pörtner, H., Roberts, D., Skea, J. and Shukla, P. R. (2022). Global Warming of 1.5 C: IPCC special report on impacts of global warming of 1.5 C above pre-industrial levels in context of strengthening response to climate change, sustainable development, and efforts to eradicate poverty (https://doi.org/10.1017/9781009157940): Cambridge University Press.

Maxted, N., Ford-Lloyd, B. V., Jury, S., Kell, S. and Scholten, M. (2006). Towards a definition of a crop wild relative. Biodivers. Conserv., 15(8), 2673-2685. doi:https://doi.org/10.1007/S40531-005-5409-6 DOI: https://doi.org/10.1007/s10531-005-5409-6

Maxted, N., Kell, S. and Brehm, J. M. (2009). Commission on genetic resources for food and agriculture. Establishment of a global network for the in-situ conservation of crop wild relatives: status and needs. Background study paper(39), 212.

Maxted, N., Kell, S., Ford-Lloyd, B., Dulloo, E. and Toledo, Á. (2012). Toward the systematic conservation of global crop wild relative diversity. Crop Sci., 52(2), 774-785. doi:https://doi.org/10.2135/cropsci2011.08.0415 DOI: https://doi.org/10.2135/cropsci2011.08.0415

Maxted, N., Kell, S., Toledo, Á., Dulloo, E., Heywood, V., Hodgkin, T., Hunter, D., Guarino, L., Jarvis, A. and Ford-Lloyd, B. (2010). A global approach to crop wild relative conservation: securing the gene pool for food and agriculture. Kew Bulletin, 65(4), 561-576. doi:https://doi.org/10.1007/S42225-011-9253-4 DOI: https://doi.org/10.1007/s12225-011-9253-4

Maxted, N. and Magos Brehm, J. (2023). Maximizing the crop wild relative resources available to plant breeders for crop improvement. Front. sustain. food syst., 7, 1010204. doi:https://doi.org/10.3389/fsufs.2023.1010204 DOI: https://doi.org/10.3389/fsufs.2023.1010204

Meyer, D. and Wien, F. (2001). Support vector machines. R News, 1(3), 23-26.

Montoya-Jiménez JC, Valdez-Lazalde JR, Ángeles-Perez G, De Los Santos-Posadas HM, and Cruz-Cárdenas G (2022). Predictive capacity of nine algorithms and an ensemble model to determine the geographic distribution of tree species. iForest-Biogeosciences and Forestry 15(5): 363. https://doi.org/10.3832/ifor4084-015 DOI: https://doi.org/10.3832/ifor4084-015

Naimi, B. (2017). Package ‘usdm’. Uncertainty analysis for species distribution models. Wien: www.cran.r-project.org.

Neuenschwander P., Adomou A.C. (2017). Reconstituting a rainforest patch in southern Benin for the protection of threatened plants Nature Conservation 21: 57-82.https://doi.org/10.3897/natureconservation.21.13906 DOI: https://doi.org/10.3897/natureconservation.21.13906

Ng'uni, D., Munkombwe, G., Mwila, G., Gaisberger, H., Brehm, J. M., Maxted, N., Kell, S. and Thormann, I. (2019). Spatial analyses of occurrence data of crop wild relatives (CWR) taxa as tools for selection of sites for conservation of priority CWR in Zambia. Plant Genetic Resources, 1-12. doi:https://doi.org/10.1017/S4479262118000497 DOI: https://doi.org/10.1017/S1479262118000497

Öckinger, E., Schweiger, O., Crist, T. O., Debinski, D. M., Krauss, J., Kuussaari, M., Petersen, J. D., Pöyry, J., Settele, J. and Summerville, K. S. (2010). Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol. Lett., 13(8), 969-979. doi:https://doi.org/10.1111/j.1461-0248.2010.01487.x DOI: https://doi.org/10.1111/j.1461-0248.2010.01487.x

Ogundola, A. F., Afolayan, A. J., and Bvenura, C. (2023). Solanum nigrum Seed viability and germination, and soil modulation effect on seedling emergence. In Sustainable Uses and Prospects of Medicinal Plants (pp. 133-143). CRC Press. DOI: https://doi.org/10.1201/9781003206620-8

Okokon, J. E., Davies, K. O., Amazu, L. U. and Umoh, E. E. (2017). Anti-inflammatory activity of leaf extract of Solanum anomalum. Journal of Medicinal Herbs, 7(4), 243-249.

Oyinloye, O.E., Ajayi, A.M. and Ademowo O.G. (2022). Solanum dasyphyllum leaf extract reduces inflammation in carrageenan-induced air pouch in rats by inhibition of cyclooxygenase-2 and inducible nitric oxide synthase. Nutrire 47, 24 https://doi.org/10.1186/s41110-022-00175-7 DOI: https://doi.org/10.1186/s41110-022-00175-7

Parra-Quijano, M., Iriondo, J.M. & Torres, E. Ecogeographical land characterization maps as a tool for assessing plant adaptation and their implications in agrobiodiversity studies. Genetic Resources Crop Evolution 59, 205–217 (2012). https://doi.org/10.1007/s10722-011-9676-7 DOI: https://doi.org/10.1007/s10722-011-9676-7

Parviainen, M., Luoto, M., Ryttäri, T. and Heikkinen, R. K. (2008). Modelling the occurrence of threatened plant species in taiga landscapes: methodological and ecological perspectives. J. Biogeogr., 35(10), 1888-1905. doi:https://doi.org/10.1111/j.1365-2699.2008.01922.x DOI: https://doi.org/10.1111/j.1365-2699.2008.01922.x

Phillips, S. J., Anderson, R. P., Dudik, M., Schapire, R. E. and Blair, M. E. (2017). Opening the black box: An open-source release of Maxent. Ecography, 40(7), 887-893. doi:https://doi.org/10.1111/ecog.03049 DOI: https://doi.org/10.1111/ecog.03049

Phillips, S. J., Anderson, R. P. and Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecol. Modell., 190(3-4), 231-259. doi:https://doi.org/10.1016/j.ecolmodel.2005.03.026 DOI: https://doi.org/10.1016/j.ecolmodel.2005.03.026

Pidwirny, M. (2006). Abiotic factors and the distribution of species. Fundamentals of Physical Geography.

Pilling, D., Bélanger, J., Diulgheroff, S., Koskela, J., Leroy, G., Mair, G., and Hoffmann, I. (2020). Global status of genetic resources for food and agriculture: challenges and research needs. Genetic Resources 1 (1), 4-16. doi: https://doi.org/10.46265/genresj.2020.1.4-16. DOI: https://doi.org/10.46265/genresj.2020.1.4-16

Pinto, A. V., Hansson, B., Patramanis, I., Morales, H. E., and van Oosterhout, C. (2024). The impact of habitat loss and population fragmentation on genomic erosion. Conservation Genetics, 25(1), 49-57. https://doi.org/10.1007/s10592-023-01548-9 DOI: https://doi.org/10.1007/s10592-023-01548-9

Ramírez-Villegas, J., Khoury, C., Jarvis, A., Debouck, D. G., and Guarino, L. (2010). A gap analysis methodology for collecting crop genepools: a case study with Phaseolus beans. PloS one, 5(10), e13497. https://doi.org/10.1371/journal.pone.0013497 DOI: https://doi.org/10.1371/journal.pone.0013497

Ratnayake, S. S., Kariyawasam, C. S., Kumar, L., Hunter, D. and Liyanage, A. (2021). Potential distribution of crop wild relatives under climate change in Sri Lanka: implications for conservation of agricultural biodiversity. Current Research in Environmental Sustainability, 3, 100092. doi:https://doi.org/10.1016/j.crsust.2021.100092 DOI: https://doi.org/10.1016/j.crsust.2021.100092

Roberts, J. and Florentine, S. (2022). Biology, distribution and management of the globally invasive weed Solanum elaeagnifolium Cav (silverleaf nightshade): A global review of current and future management challenges. Weed Res., 62(6), 393-403. doi:https://doi.org/10.1111/wre.12556 DOI: https://doi.org/10.1111/wre.12556

R Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (Version 4.0.3.). Vienna, Austria. Retrieved from https://www.R-project.org/

Salako, V. K., Vihotogbé, R., Houéhanou, T., Sodé, I. A. and Glèlè Kakaï, R. (2019). Predicting the potential impact of climate change on the declining agroforestry species Borassus aethiopum Mart. in Benin: a mixture of geostatistical and SDM approach. Agrofor. Syst., 93, 1513-1530. doi:https://doi.org/10.1007/S40457-018-0262-2 DOI: https://doi.org/10.1007/s10457-018-0262-2

Samuels, J. (2015). Biodiversity of food species of the Solanaceae family: a preliminary taxonomic inventory of subfamily Solanoideae. Resources, 4(2), 277-322. doi:https://doi.org/10.3390/resources4020277 DOI: https://doi.org/10.3390/resources4020277

Sarma, H. and Sarma, A. (2011). Solanum nigrum L., a nutraceutical enriched herb or invasive weed? Paper presented at the International Conference on Environment and BioScience IPCBEE.

Schuster, R., Buxton, R., Hanson, J. O., Binley, A. D., Pittman, J., Tulloch, V., La Sorte, F. A., Roehrdanz, P. R., Verburg, P. H. and Rodewald, A. D. (2023). Protected area planning to conserve biodiversity in an uncertain future. Conserv. Biol., 37(3), e14048. doi:https://doi.org/10.1111/cobi.14048 DOI: https://doi.org/10.1111/cobi.14048

Sintayehu, D. W. (2018). Impact of climate change on biodiversity and associated key ecosystem services in Africa: a systematic review. Ecosyst. Health Sustain., 4(9), 225-239. doi:https://doi.org/10.1080/20964129.2018.1530054 DOI: https://doi.org/10.1080/20964129.2018.1530054

Stanton, R., Wu, H. and Lemerle, D. (2012). Factors affecting silverleaf nightshade (Solanum elaeagnifolium) germination. Weed Sci., 60(1), 42-47. doi:https://doi.org/10.1614/WS-D-11-00105.1 DOI: https://doi.org/10.1614/WS-D-11-00105.1

Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. and Ludwig, C. (2015). The trajectory of the Anthropocene: the great acceleration. Anthr. Rev., 2(1), 81-98. doi:https://doi.org/10.1177/2053019614564785 DOI: https://doi.org/10.1177/2053019614564785

Stolton, S., Maxted, N., Ford-Lloyd, B., Kell, S. and Dudley, N. (2006). Food Stores: Using Protected Areas to Secure Crop Genetic Diversity; Worldwide Fund for Nature: Woking, UK.

Syfert, M. M., Castañeda-Álvarez, N. P., Khoury, C. K., Särkinen, T., Sosa, C. C., Achicanoy, H. A., Bernau, V., Prohens, J., Daunay, M. C. and Knapp, S. (2016). Crop wild relatives of the brinjal eggplant (Solanum melongena): Poorly represented in genebanks and many species at risk of extinction. Am. J. Bot., 103(4), 635-651. doi:https://doi.org/10.3732/ajb.1500539 DOI: https://doi.org/10.3732/ajb.1500539

Tas, N., West, G., Kircalioglu, G., Topaloglu, S. B., Phillips, J., Kell, S. and Maxted, N. (2019). Conservation gap analysis of crop wild relatives in Turkey. Plant Genetic Resources, 1-10. doi:https://doi.org/10.1017/S4479262118000564 DOI: https://doi.org/10.1017/S1479262118000564

Toffa, Y., Idohou, R. and Fandohan, A. B. (2022). Modélisation de la distribution des espèces en Afrique: état de l'art et perspectives. Physio-Géo. Géographie physique et environnement, 17, 43-65. doi:https://doi.org/10.4000/physio-geo.13738 DOI: https://doi.org/10.4000/physio-geo.13738

UNEP-WCMC (2023) Protected areas map of the world, https://www.protectedplanet.net/en

van Treuren, R., Hoekstra, R., Wehrens, R. and van Hintum, T. (2020). Effects of climate change on the distribution of crop wild relatives in the Netherlands in relation to conservation status and ecotope variation. Glob. Ecol. Conserv., 23, e01054. doi:https://doi.org/10.1016/j.gecco.2020.e01054 DOI: https://doi.org/10.1016/j.gecco.2020.e01054

Vargas, J. H., Consiglio, T., Jørgensen, P. M. and Croat, T. B. (2004). Modelling distribution patterns in a species-rich plant genus, Anthurium (Araceae), in Ecuador. Divers. distrib., 10(3), 211-216. doi:https://doi.org/10.1111/j.1366-9516.2004.00081.x DOI: https://doi.org/10.1111/j.1366-9516.2004.00081.x

Vignali, S., Barras, A. G., Arlettaz, R. and Braunisch, V. (2020). SDMtune: An R package to tune and evaluate species distribution models. Ecol. Evol., 10(20), 11488-11506. doi:https://doi.org/10.1002/ece3.6786 DOI: https://doi.org/10.1002/ece3.6786

Warren, D. L., Glor, R. E. and Turelli, M. (2010). ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 33(3), 607-611. doi:https://doi.org/10.1111/j.1600-0587.2009.06142.x DOI: https://doi.org/10.1111/j.1600-0587.2009.06142.x

Williams, J. W. and Jackson, S. T. (2007). Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ., 5(9), 475-482. doi:https://doi.org/10.1890/070037 DOI: https://doi.org/10.1890/070037

Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A. and NCEAS Predicting Species Distributions Working Group. (2008). Effects of sample size on the performance of species distribution models. Divers Distrib., 14(5), 763-773. https://doi.org/10.1111/j.1472-4642.2008.00482.x DOI: https://doi.org/10.1111/j.1472-4642.2008.00482.x

Yackulic, C. B., Chandler, R., Zipkin, E. F., Royle, J. A., Nichols, J. D., Campbell Grant, E. H. and Veran, S. (2013). Presence-only modelling using MAXENT: when can we trust the inferences? Methods Ecol. Evol., 4(3), 236-243. doi:https://doi.org/10.1111/2041-210x.12004 DOI: https://doi.org/10.1111/2041-210x.12004

Zhang, L., Liu, S., Sun, P., Wang, T., Wang, G., Zhang, X., and Wang, L. (2015). Consensus forecasting of species distributions: the effects of niche model performance and niche properties. PloS one, 10(3), e0120056. https://doi.org/10.1371/journal.pone.0120056 DOI: https://doi.org/10.1371/journal.pone.0120056